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1 Introduction

Writing the first paragraph of a paper is not easy, so we decided to consult a large language

model (LLM) based on our abstract. The model suggested the following sentence: ‘In an era

where artificial intelligence (AI) and human decision-making increasingly intersect, this paper

explores the nuanced dynamics between a decision maker (DM) and an AI agent, each equipped

with private insights into an uncertain situation.’ Although the LLM’s suggestion articulately

encapsulates the key elements of our study, we decided to proceed with the current format —

it does so even better.

The paper analyzes the strategic intersection between an AI agent (henceforth, AI) and a

DM, where each possesses a private, informative signal about an unknown state. The AI offers

a preliminary truthful assessment, and the DM provides the final decision based on his private

information and the AI’s recommendation. The DM strives to provide an accurate decision,

but conditional on the state and his final assessment, he also prefers the AI to be incorrect. The

reason is clear: if the DM is also incorrect, this allows him to share any liability with the AI,

and in case the DM is correct, it allows him to establish superiority.1 This payoff structure is

corroborated by recent empirical evidence from Almog et al. (2024) who estimate the significant

psychological costs of being overruled by AI (in the context of tennis umpires).

Our analysis shows that the DM has three optimal strategies: (i) a DM-led strategy that

relies solely on his private signal; (ii) an AI-led strategy that strictly aligns with the AI’s

assessment; and (iii) a Guided strategy involving some degree of learning, conditional on both

signals. To study the nature of these equilibria, we map the parameter space, encompassing

expertise levels, and payoffs, to three disjoint sets – one for each optimal strategy. We then use

the notion of correctness, defined by the probability that the DM arrives at a correct decision,

to study the transitions between the different regimes.

The study presents three (somewhat surprising) phenomena. The first, referred to as the

dependency threshold, states that the correctness of the process is not a monotonic function of

the AI’s expertise level. Specifically, an infinitesimal increase in the AI’s accuracy may yield a

1As later discussed in Section 3.2.1, the analysis requires only one of these externalities to hold.
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stark drop in the correctness. This occurs due to a transition from an optimal Guided strategy

to an optimal AI-led one, triggered by state-dependent payoff externalities. Namely, if the

expertise levels of both participants are rather close, the DM (optimally) “hedges” his expected

payoff by completely relying on the AI’s advice. Figure 1 illustrates this effect by depicting the

correctness as a function of the AI’s accuracy.

The second phenomenon, named the humility threshold, mirrors the first by varying the

DM’s expertise level. It states that an infinitesimal increase in the DM’s expertise level can

also decrease the probability of reaching a correct decision due to a shift from an optimal Guided

strategy to an optimal DM-led one. Again, assuming that the expertise levels are rather close,

the DM can increase his expected payoff by distinguishing his decision from the AI’s preliminary

assessment.

As our reliance on AI technology is projected to increase significantly, the relevance of these

findings extends well beyond the theoretical aspects. For example, in February 2024, the British

Columbia Civil Resolution Tribunal held Air Canada accountable for incorrect information

provided by the company’s chatbot, despite the company’s argument that the chatbot was

“a separate legal entity responsible for its own actions.”2 Additionally, many recent academic

papers have been published containing explicit comments from LLMs, such as: “as of my last

knowledge update” and “I don’t have access to real-time data.”3 These examples underscore

the need for a rational approach to integrating AI technologies into critical decision-making

processes, a necessity that becomes increasingly apparent with the growing application of AI

in fields like medical imaging and assessments.4

Another effect uncovered in our analysis concerns the relative expertise levels of the two

agents. Given the option to choose, we ask whether a better-informed DM is more beneficial,

in terms of correctness, than an AI with more information. Our analysis indicates that, in some

scenarios, it is preferable to have a less-informed DM paired with a better-informed AI. This

phenomenon also follows from the transition between two regimes: one where a less-informed

2See bbc.com/travel/article/20240222-air-canada-chatbot-misinformation-what-travellers-should-know.
3A Google Scholar search in March 2024 showed more than 150 academic papers containing these phrases.

There are even astonishing examples of published papers that cite non-existing literature.
4see, for example, Arabi et al. (2021); Barragán-Montero et al. (2021) and Varoquaux and Cheplygina (2022),

as well as the broad literature review in Agarwal et al. (2023).
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Figure 1: An infinitesimal increase in the AI’s accuracy qAI yields a transition from an optimal guided strategy
(blue line), to an optimal AI-led strategy (red line). This leads the DM to ignore his private information, thus
producing an inferior expected outcome.

DM learns from the AI’s recommendations, and the other which eliminates this possibility.

1.1 Related research

This paper encompasses elements from several different sub-fields, the primary being Bayesian

learning with externalities, which expanded remarkably since the studies of Banerjee (1992),

Bikhchandani et al. (1992), and Smith and Sorensen (2000).5 Bayesian learning with exter-

nalities typically relates to either positive or negative congestion costs, under which agents’

payoffs either increase or decrease depending on the number of agents who choose the same

action (see, e.g., Veeraraghavan and Debo (2011), Debo et al. (2011), and Eyster et al. (2014),

among others). Our study matches this line of research through the possibility of learning

under positive/negative externalities among experts, as well as the basic information structure

and actions. Specifically, Eyster et al. (2014) show that backward-looking negative externali-

ties (i.e., players’ actions are less profitable the more they are played by others) prevent action

fixation and improve social learning. This resembles our notion of a Guided equilibrium, where

the second agent learns from the first, through payoff (and information) considerations. Con-

versely, this is in contrast to the findings of Ali and Kartik (2012) that identifies a unique

5For a recent extensive review of this topic, see Bikhchandani et al. (2021).
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optimal (AI-led) strategy in case agents’ preferences are aligned.

A recent paper relevant to our work is Agarwal et al. (2023), which illustrates how radi-

ologists fail to account for possible correlations between the AI’s assessment and their private

signals. Our model serves as a baseline framework for theirs, assuming a DM without bounded-

rationality constraints. Similarly a study by Angelova et al. (2023) investigates related issues

within the context of bail decisions, examining variations in judges’ abilities to optimally utilize

private information when overriding AI decisions. Our principal contributions focus on the shift

between optimal-strategy regimes, specifically from a Guided strategy to either a DM-led or AI-

led strategy. These transitions have been empirically validated in a recent study by Kanazawa

et al. (2022), which assesses the effect of AI assistance on taxi drivers in Japan. This study

demonstrates that AI assistance significantly boosts the productivity of lower-skilled drivers

(aligning with a Guided or AI-led strategy) while having negligible impact on higher-skilled

drivers (consistent with a DM-led strategy).

Structure of the paper. In Section 2 we describe the model and the key definitions. In

Section 3 we present the main results. Concluding remarks are given in Section 4. To facilitate

readability, proofs are relegated to the appendix.

2 The model

A decision-maker (hereafter, DM) wishes to identify a binary unknown state. To achieve this, he

utilizes an AI advisor, trained specifically for such tasks, and based on the AI’s recommendation

and his own observation, the DM provides an assessment. While the DM’s goal is to provide

an accurate assessment, he faces a conflict of interest concerning the AI’s accuracy. On the one

hand, he prefers the AI to provide an accurate assessment, because the information conveyed

by the AI aids him in making the correct decision. On the other hand, he perceives the AI as

a potential rival. So, conditional on his own decision and state, he prefers the AI to provide an

incorrect assessment. This reflects his ambition either to assert his superiority, or to share the

blame (in case both assessments are false).

Formally, consider the following decision problem G. There are two states denoted by
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θ ∈ Θ = {0, 1}, and a prior probability p = Pr(θ = 0) > 1
2
. Given θ, every agent i ∈ {AI,DM}

receives an independent, noisy and informative signal si ∈ S = {0, 1}, such that Pr(si = θ|θ) =

qi. One can think of qi as the expertise level of agent i, a measure of agent i’s ability to correctly

identify the state. The action set of every agent i is A = {0, 1}.

The decision problem evolves as follows. First, nature chooses a state θ according to a

common, publicly known, prior p. Then, every agent i receives a private signal si based on

the previously defined information structure. The AI is the first to publicly provide his true

assessment aAI(sAI) = sAI. After observing aAI, the DM makes a decision aDM ∈ A.

The utility of the DM is characterized by four possible payoffs: U1 ≥ U2 > U3 ≥ U4, where

U1 is the payoff in case the DM is the only one to choose the correct action, U2 is the payoff

when both are correct, U3 is the payoff in case both are incorrect and U4 is the DM’s payoff if

he is the only one to choose the wrong action. Since games are strategically equivalent under

an affine transformation of payoffs, it is without loss of generality that we normalize U2 = 1

and U3 = −1. The realized payoffs are summarized as follows:

U(aDM, aAI|θ) =



U1, if aDM = θ, aAI ̸= θ

1, if aDM = θ, aAI = θ

−1, if aDM ̸= θ, aAI ̸= θ

U4, if aDM ̸= θ, aAI = θ

To ensure that the agents’ signals are informative independently of the state, we assume

that min{qAI, qDM} ≥ p, which is equivalent to Pr(θ = x|si = x) > 1
2
for every (i, x). Otherwise,

in a single-player set-up where qi < p, the state θ = 0 is more likely than θ = 1, regardless of

the agent’s information.6

Denote the strategy of the DM by σDM : S × A → ∆(A). Our first goal is to identify the

optimal strategy for every composition of the parameters (p, qAI, qDM, U1, U4). To achieve this

goal, we define the three following strategies. Our analysis shows that, for every choice of the

6One can find some resemblance between our model and the example provided in Section 2 of Smith et al.
(2021).
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mentioned parameters, exactly one of these strategies is optimal:7

• A strategy σDM is a DM-led strategy if the DM’s action matches his private signal, i.e.,

if σDM = sDM for every sDM. This typically occurs when the DM is much more informed

than the AI, so he ignores it.

• A strategy σDM is an AI-led strategy if the DM’s action matches the recommendation of

the AI in every realization, i.e., if σDM = sAI for every sAI. This typically occurs when

the AI is much more informed than the DM, so the DM ignores his private signal.

• A strategy σDM is a Guided strategy if σDM = sDM, with the exception of σDM(aAI =

0, sDM = 1) = 0. That is, the DM follows his signal, unless (aAI, sDM) = (0, 1) where he

takes the decision aDM = 0. This typically occurs when the two have close expertise levels,

so that the DM learns from the AI, and weighs in both signals into his decision. Alter-

natively, this can be viewed as a two-step screening process, in which the DM intervenes

only when the AI detects an anomaly (the less-likely state).

Using this classification, we proceed to our main goal – to study the strategic interaction

between the AI and the DM on the latter’s final decision. For this purpose, we use the notion of

“correctness”, which measures the probability of reaching a correct decision.8 Formally, define

the correctness of the process to be the probability that the DM’s decision matches the true

state of the world, so C(qAI, qDM) = Pr(σDM = θ). In general, the correctness depends on the

expertise levels, as well as on the prior p and the payoffs U1 and U4. In what follows, we will

assume p, U1, and U4 are fixed and study how the correctness varies with the agents’ expertise

levels.

Finally, we introduce a logit notation to represent probabilities, so

p̃ := ln

(
p

1− p

)
, q̃i := ln

(
qi

1− qi

)
.

7Other than on the boundaries between different areas in this parameter space, where different strategies
coincide.

8See Arieli et al. (2018) for more details.
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This notation allows us to simplify some of the equations and conditions resulting from Bayesian

updating and present them as linear functions.

3 Main results

Our main results comprise several parts. In Theorem 1 we characterize the conditions for each

of the three strategies to be optimal, as a function of p, qAI, qDM, U1 and U4. Figure 2 illustrates

this characterization. It shows the three disjoint optimal-strategy regions in the (qAI, qDM)-

plane given U1 = −U4 and p. The two regions of the AI-led and DM-led strategies are rather

straightforward — a significantly higher expertise level of one agent over the other. On the

other hand, the region of the Guided strategy is more intriguing. It arises when neither agent

has a clear dominance. This leads the DM to rely on the AI’s assessment in borderline situations

when the DM’s signal is sDM = 1, which contradicts an AI’s recommendation of aAI = 0 along

with the biased prior (towards θ = 0).

Optimal-strategy regions in the (qAI, qDM)-plane

p 1
p

1

AI-led

DM-led

Guided

(p,p)

qAI

qDM

Figure 2: The different optimal-strategy regions in the (qAI, qDM)-plane for U1 = −U4. Each region corresponds
to exactly one of the three possible strategies: DM-led (red), Guided (blue), and AI-led (green).

We use the characterization in Theorem 1 to prove three results concerning the non-

monotonic nature of the correctness. In Proposition 1, we show that correctness is not a
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monotone function of the AI’s expertise level; thus, reducing the AI’s accuracy can increase the

probability of reaching the correct decision. More precisely, there exists a threshold expertise

level, referred to as the dependency threshold, such that the DM completely ignores his private

information if and only if the AI’s expertise level is above this threshold. Consequently, given

a less-informed AI, the problem transitions from an AI-led scenario to a Guided one, in which

all relevant information is taken into account.

Similarly, in Proposition 2, we prove that an infinitesimal increase in the DM’s expertise

level may trigger a stark drop in correctness. That is, there exists a threshold expertise level,

namely the humility threshold, such that the DM ignores the information conveyed by the AI

if and only if the DM’s expertise level is above this threshold. Thus, only a less-informed DM

would consider both signals to ideally reach a more accurate decision.

In addition, Proposition 3 investigates two contrasting scenarios: one where the DM is more

informed than the AI, and the reversed situation. We show that assigning the less precise signal

to the DM, rather than to the AI, can, paradoxically, increase the likelihood of reaching a correct

decision. This result implies that the DM, who could exploit errors made by the AI, might

actually benefit from being assigned the less accurate signal. This phenomenon underscores the

ability to enhance learning processes when starting with a more accurate initial assessment.

3.1 Optimal-strategy characterization

When the DM decides against the AI’s assessment he weighs in two possible gains: U1 + 1,

which is the potential gain from non-conformity (being correct alone versus being incorrect

with the AI), and 1− U4, which is the potential gain from conformity (being correct with the

AI versus being incorrect alone). We define the non-conformity gain ratio as the ratio between

these two numbers, and denote it by γ = U1−(−1)
1−U4

. To be in line with the logit representation of

probabilities, we denote γ̃ = ln γ.

In general, we use the non-conformity gain ratio γ to study how the optimal strategy of the

DM evolves, as a function of the payoffs. Though one can perform an analysis for every γ̃ (and

for every U1 and U4), we limit the discussion to the range γ̃ ≤ q̃AI+ q̃DM− p̃. The reason is that

when γ̃ is too large, it becomes the sole driving force behind the optimal strategy, irrespective
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of private and public information. Specifically, suppose that both signals are sAI = sDM = 1.

This yields the highest possible posterior on the event {θ = 1}. Still, if the previous inequality

is violated, then the DM benefits from “gambling” on the low-probability event {θ = 0|sAI =

sDM = 1}, simply because it opposes the AI’s assessment.

We start with an optimal-strategy characterization. The following theorem depicts the DM’s

optimal strategy, as a function of the p, qAI, qDM, and γ.

Theorem 1. Consider the previously defined decision problem G with fixed parameters p, qAI, qDM,

and γ.

• The AI-led strategy is optimal if and only if γ̃ ≤ q̃AI − q̃DM − p̃.

• The Guided strategy is optimal if and only if q̃AI − q̃DM − p̃ ≤ γ̃ ≤ q̃AI − q̃DM + p̃.

• The DM-led strategy is optimal if and only if q̃AI − q̃DM + p̃ ≤ γ̃ ≤ q̃AI + q̃DM − p̃.

Let us provide some intuition to the Guided outcome. This strategy is optimal whenever the

expertise levels of both are rather close, as evident from the condition q̃AI− q̃DM ∈ (γ̃− p̃, γ̃+ p̃).

Thus, when the DM receives a signal that matches the recommendation of the AI, it is optimal

for him to follow it accordingly. Otherwise, he resorts to the prior which is biased towards an

aDM = 0 recommendation.

The ability to vary the payoffs of the game, through the non-conformity gain ratio γ, shows

how the transition from an optimal AI-led strategy to a DM-led one, passes through an optimal

Guided strategy. Figure 3 illustrates this transition. From a mechanism design perspective, an

outside stakeholder can implement any of the three strategy profiles by calibrating the payoffs

according to the required γ. As each strategy profile induces a different correctness level, this

allows the stakeholder to maximize the probability of reaching a correct decision.

We now turn to calculate the correctness of each strategy. Clearly, CAI(qAI, qDM) = qAI for

the AI-led strategy and CDM(qAI, qDM) = qDM for the DM-led one. For the Guided strategy, it

is straightforward to verify that

CG(qAI, qDM) = qDM + pqAI(1− qDM)− (1− p)(1− qAI)qDM. (1)
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q̃AI − q̃DM − p̃ q̃AI − q̃DM + p̃ γ̃

AI-led Guided DM-led

qAI decreases qDM decreases

Figure 3: The transitions between optimal strategy regimes as a function of γ. The two arrows indicate how
the thresholds shift, thus expanding the Guided regime, given that the expertise levels decrease.

Two things are noteworthy. First, the correctness is symmetric in qAI and qDM. Second,

while the Guided strategy uses two signals rather than one, it is not evident that CG >

max{CDM, CAI} in general. For example, when qAI ≪ qDM, the information of the AI is rela-

tively inaccurate, and the correctness is improved when ignoring it and adopting the DM-led

strategy. For γ̃ ̸= 0, this results in a discontinuity of the correctness at the transitions between

the regions of optimality, which is the driving force of our next two results. We note that

for γ̃ = 0 such discontinuity does not exist, and that CG > max{CDM, CAI} given an optimal

Guided strategy, as depicted in Figure 4.

Correctness as a function of qDM for γ̃ = 0

1

0.7

0.8

0.9

1

AI-led DM-ledGuided

qD
M

qAI

qDM

C

Figure 4: The correctness of the process as a function of the DM’s expertise level, and a fixed level of qAI = 0.8
for the AI, and p = 0.6. The dashed vertical lines divide the axis into the different optimal strategy regions
(from left to right): AI-led, Guided, and DM-led. Notably, the Guided regime supports a correctness level that
individually supersedes the expertise levels of both agents.
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3.2 Key insights

The following Proposition 1, which builds on Theorem 1, presents our first main insight: a

better-informed AI does not necessarily improve the correctness of the process. In fact, one

can find two disjoint intervals such that every expertise level of the AI in the lower interval

generates strictly higher correctness than every expertise level in the higher interval. The limit

value that separates these two intervals is referred to as the dependency threshold – the highest

level that allows for a strategic learning process. Above this level, the AI is sufficiently good

that the DM fully relies on it and completely ignores his private signal.

Proposition 1 (The dependency threshold). Fix (qDM, γ, p) such that q̃DM > −γ̃ > p̃.

There exists an interval (q
AI
, qAI) and an interior value q∗, such that for every q−AI ∈ (q

AI
, q∗)

and every q+AI ∈ (q∗, qAI), the correctness is higher when the AI has the lower quality signal,

i.e., C(q−AI, qDM) > C(q+AI, qDM).

Three clarifications are in order. First, the preliminary assumption that q̃DM > −γ̃ > p̃

enables us to shift from a Guided equilibrium to an AI-led one, by varying the AI’s expertise

level qAI. Otherwise, e.g., in case γ̃ is significantly smaller than −q̃DM− p̃, we are left only with

an AI-led optimal strategy, independently of qAI. Second, the transition between regimes hinges

on the fact γ̃ < 0, which implies that U1 < |U4|. In other words, the positive externalities are

small compared to the negative ones, so the DM is inclined to ignore his private information

and blindly follow the AI, further along the guided equilibrium. Third, note that the potential

loss from crossing the dependency threshold q∗DM is not necessarily small. Figure 5 illustrates

the potential magnitude of this non-monotone effect, where an infinitesimal increase in qDM

triggers a drop from 0.81 to 0.75 in the overall correctness value.

The following Proposition 2 mirrors the previous result, so that a better-informed DM

completely ignores the AI’s assessment only to produce an inferior result, in terms of correctness.

The limit value where the regime shifts from an optimal Guided strategy to an optimal DM-

led one is referred to as the humility threshold – the highest level that enables some strategic

learning.
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Proposition 2 (The humility threshold). Fix (qAI, γ, p) such that q̃AI > γ̃ > p̃. There

exists an interval (q
DM

, qDM) and an interior value q∗, such that for every q−DM ∈ (q
DM

, q∗) and

every q+DM ∈ (q∗, qDM), the correctness is higher when the DM has the lower quality signal, i.e.,

C(qAI, q
−
DM) > C(qAI, q

+
DM).

Similarly to Proposition 1, the condition q̃AI > γ̃ > p̃ enables us to shift from a Guided

equilibrium to a DM-led one, by varying the DM’s accuracy. Moreover, the fact that γ̃ > 0

suggests that U1 > |U4|, such that positive externalities overtake the negative ones, and the

DM is inclined to strictly follow his private signal.

The dependency and humility thresholds

Correctness as a function of qDM

qAI0.75

0.7

0.8

0.9

DM-ledGuided
qDM

C

Correctness as a function of qAI

qDM0.75

0.7

0.8

0.9

Guided AI-led
qAI

C

Figure 5: An illustration of the humility (left) and dependency (right) thresholds. Left: The correctness of the
process as a function of the DM’s expertise level, given p = 0.6, qAI = 0.8, and γ = 2. The dotted (blue) line
describes the correctness under a Guided strategy, and the solid (red) line describes the correctness under a
DM-led strategy. An increase in the DM’s expertise level above the threshold causes the correctness to drop.
Note that the Humility threshold is below qAI. Right: The correctness of the process as a function of the AI’s
expertise level, given p = 0.6, qDM = 0.8, and γ = 0.5. The dotted (blue) line describes the correctness under a
Guided strategy, and the solid (green) line describes the correctness under an AI-led strategy. An increase in
the AI’s expertise level above the threshold causes the correctness to drop. Note that the dependency threshold
is below qDM.

Our final proposition addresses the hypothetical decision between opting for a better-

informed DM versus a better-informed AI. Proposition 3 demonstrates that, in terms of cor-

rectness, there are instances where it is advantageous to pair a less-informed DM with a well-

informed AI. Conversely, a setup where the DM is more informed than the AI can restrict the
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learning process inherent in a DM-led regime.

Proposition 3. Assume γ̃ > p̃ and fix qH > qL such that q̃H − q̃L < p̃. In case (qAI, qDM) =

(qH , qL) yields the Guided optimal strategy with correctness CG(q
H , qL), then reversing the

expertise levels to (qAI, qDM) = (qL, qH) would make the DM-led strategy optimal with a lower

correctness of CDM(q
L, qH) < CG(q

H , qL). Hence, higher correctness is obtained when the DM

is given the lower quality signal.

To gain some intuition for this result, consider the signals that both agents receive. Once

the DM is better-informed, it is sub-optimal for him to deviate from his relatively high-accuracy

signal toward the AI’s less-accurate assessment. In practice, the ordering (qAI, qDM) = (qL, qH)

yields a DM-led optimal strategy, which implies that the DM’s decision is based entirely on his

own (superior) signal. In case the relative accuracy reverses, the less-informed DM takes into

account all available information and reverts to the AI’s recommendation if it is also supported

by the prior.

3.2.1 One-sided externalities

This analysis presupposes the existence of both positive and negative externalities – that is,

the DM prefers the AI’s recommendations to be incorrect, whether the DM’s own decision is

correct or incorrect. Nevertheless, our findings remain valid even if one of these externalities is

absent, meaning either U1 = U2 or U4 = U3. To see this, redefine the non-conformity ratio as

U1 = γ(1 − U4) − 1, so that infinitely many pairs of (U1, U4) yield the same γ. In particular,

setting U4 = U3 = −1 results in U1 = 2γ − 1. Nevertheless, the presence of at least one

externality is essential for our conclusions to hold. Otherwise, the strategic consideration is

lost, and the DM faces a simple maximization problem given the two signals. This scenario

typically arises when externalities are symmetric, i.e., U1 = −U4 which corresponds to γ = 1.

4 In conclusion

This paper provides an analysis of AI-assisted decision-making processes. Our analysis depicts

a mapping from the agents’ expertise levels to the DM’s optimal strategy, showing that: (i)
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better-informed rational agents may generate worse recommendations, and (ii) the outcome is

typically improved when the agent with the higher level is the AI advisor, which provides the

initial assessment. We conclude that there is some benefit from regulating the integration of

AI in the intermediate phase where the agents’ expertise levels are rather close.

One path for such rational integration involves adjusting the liability for the DM in the

event of an error, or the reward for a correct decision. By implementing this approach, it

is possible to incentivize the DM to prioritize the correctness of the decision-making process.

Such optimal adjustments of liability and reward are typically robust to small fluctuations in

expertise levels and prior probabilities. Consequently, external stakeholders can ensure that

the decision-making process is aligned with their interests.

Moreover, the Guided strategy enhances resource utilization efficiency, especially concerning

human resources. According to this strategy, the DM defers to the AI’s assessment when

aAI = 0, regardless of their own information. This protocol positions the AI as a preliminary

screening device, primarily tasked with identifying potential anomalies (the rare θ = 1 state),

so that the DM is consulted only when an anomaly is indeed detected, effectively serving

as a secondary-level analysis. It aligns with the common practice of allocating simpler tasks

to computers, while reserving human interventions for more complex scenarios. Our results

indicate that this method is not only practical but efficient as well.
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A Proofs

A.1 Proof of Theorem 1

Proof. Fix qAI, qDM, p, and γ. Our analysis is divided into four different states depending on

aAI = sAI and sDM.

Consider first the case where aAI = 0 and sDM = 0. This state occurs with probability

qAIqDM when θ = 0, and with probability (1 − qAI)(1 − qDM) when θ = 1. The DM’s best

response in this state is aDM = 0 if and only if

pqAIqDM · 1 + (1− p)(1− qAI)(1− qDM) · (−1) ≥ pqAIqDM · U4 + (1− p)(1− qAI)(1− qDM) · U1,

(the best response is aDM = 1 when the inequality is reversed). The last inequality can be

rearranged into
p

1− p
· qAI

1− qAI

· qDM

1− qDM

· 1− U4

1 + U1

≥ 1,

or, equivalently,

p̃+ q̃AI + q̃DM − γ̃ ≥ 0. (2)

Next, consider the case where aAI = 0 and sDM = 1. This state occurs with probability

qAI(1 − qDM) when θ = 0, and with probability (1 − qAI)qDM when θ = 1. The DM’s best

response in this state is aDM = 0 if and only if

pqAI(1− qDM) · 1 + (1− p)(1− qAI)qDM · (−1) ≥ pqAI(1− qDM) · U4 + (1− p)(1− qAI)qDM · U1,

which can be rearranged into

p̃+ q̃AI − q̃DM − γ̃ ≥ 0. (3)

Third, consider the case where aAI = 1 and sDM = 0. This state occurs with probability

(1 − qAI)qDM when θ = 0, and with probability qAI(1 − qDM) when θ = 1. The DM’s best
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response in this state is aDM = 0 if and only if

p(1− qAI)qDM · U1 + (1− p)qAI(1− qDM) · U4 ≥ p(1− qAI)qDM · (−1) + (1− p)qAI(1− qDM) · 1,

which can be rearranged into

p̃− q̃AI + q̃DM + γ̃ ≥ 0. (4)

Lastly, consider the case where aAI = 1 and sDM = 1. This state occurs with probability

(1 − qAI)(1 − qDM) when θ = 0, and with probability qAIqDM when θ = 1. The DM’s best

response in this state is aDM = 0 if and only if

p(1− qAI)(1− qDM) · U1 + (1− p)qAIqDM · U4 ≥ p(1− qAI)(1− qDM) · (−1) + (1− p)qAIqDM · 1,

which can be rearranged into

p̃− q̃AI − q̃DM + γ̃ ≥ 0. (5)

In a DM-led strategy, aDM(·, sDM) = sDM, so it is optimal if Ineq. (2) and Ineq. (4) hold

while Ineq. (3) and Ineq. (5) are reversed:

p̃+ q̃AI + q̃DM − γ̃ ≥ 0, (6a)

p̃+ q̃AI − q̃DM − γ̃ ≤ 0, (6b)

p̃− q̃AI + q̃DM + γ̃ ≥ 0, (6c)

p̃− q̃AI − q̃DM + γ̃ ≤ 0. (6d)

Note that Ineq. (6d) implies that Ineq. (6a) holds, and Ineq. (6b) yields Ineq. (6c). Hence, a

DM-led strategy is optimal if and only if q̃AI − q̃DM + p̃ ≤ γ̃ ≤ q̃AI + q̃DM − p̃.

In an AI-led strategy, aDM(aAI, ·) = aAI, so Ineq. (2) and Ineq. (3) should hold while
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Ineq. (4) and Ineq. (5) are reversed:

p̃+ q̃AI + q̃DM − γ̃ ≥ 0, (7a)

p̃+ q̃AI − q̃DM − γ̃ ≥ 0, (7b)

p̃− q̃AI + q̃DM + γ̃ ≤ 0, (7c)

p̃− q̃AI − q̃DM + γ̃ ≤ 0. (7d)

Note that Ineq. (7d) implies that Ineq. (7a) holds, and Ineq. (7c) yields Ineq. (7b) and Ineq. (7d).

Hence, an AI-led strategy is optimal if and only if γ̃ ≤ q̃AI − q̃DM − p̃.

In a Guided strategy, aDM(aAI, sDM) = sDM except for aDM(0, 1) = 0 so Ineq. (2), Ineq. (3)

and Ineq. (4) should hold while Ineq. (5) is reversed:

p̃+ q̃AI + q̃DM − γ̃ ≥ 0, (8a)

p̃+ q̃AI − q̃DM − γ̃ ≥ 0, (8b)

p̃− q̃AI + q̃DM + γ̃ ≥ 0, (8c)

p̃− q̃AI − q̃DM + γ̃ ≤ 0. (8d)

Note that Ineq. (8d) implies that Ineq. (8a) holds, and Ineqs. (8c) and (8b) are equivalent to

γ̃ − p̃ ≤ q̃AI − q̃DM ≤ γ̃ + p̃. Since qDM ≥ p, one can show that Ineq. (8b) yields Ineq. (8d) as

follows,

q̃AI + q̃DM ≥ q̃AI + p̃ ≥ γ̃ + q̃DM ≥ γ̃ + p̃.

So, one only needs to sustain the inequalities γ̃ − p̃ ≤ q̃AI − q̃DM ≤ γ̃ + p̃, as stated in the

theorem. This concludes our proof.

A.2 Proof of Proposition 1

Proof. Fix (qDM, γ, p) so that q̃DM > −γ̃ > p̃. Take q̃∗ = γ̃ + q̃DM + p̃. The condition q̃DM >

−γ̃ > p̃ assures that γ̃+ q̃DM > 0, which implies that q̃∗ = γ̃+ q̃DM + p̃ > p̃. In addition, we get

that −γ̃ − p̃ > 0, so that q̃DM = q̃∗ − γ̃ − p̃ > q̃∗ > p̃, as needed.
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From Theorem 1, we know that the optimal strategy for every sufficiently close qAI < q∗

is the Guided strategy (note that qAI cannot be too small so that the optimal strategy is not

the DM-led), and the optimal strategy for every qAI > q∗ is the AI-led one. Thus, there exists

an open interval (q
AI
, qAI) which contains q∗, such that for every q−AI ∈ (q

AI
, q∗) the optimal

strategy is a Guided one, whereas for every q+AI ∈ (q∗, qAI) the optimal strategy is an AI-led

strategy.

Let us compute the correctness in both cases. Under an AI-led strategy, the correctness is

qAI, whereas under a Guided strategy, the correctness is

C(qAI, qDM) = qAI + pqDM(1− qAI)− (1− p)(1− qDM)qAI.

The fact that γ̃ < 0 implies that q̃∗ = γ̃ + q̃DM + p̃ < q̃DM + p̃. Thus, q̃DM + p̃ > q̃∗ which

suggests that

pqDM(1− q∗) > (1− p)(1− qDM)q
∗,

or equivalently,

q∗ + pqDM(1− q∗)− (1− p)(1− qDM)q
∗ > q∗,

and the LHS is indeed the correctness under a Guided strategy. Hence, lim
qAI→q∗−

CG(qAI, qDM) >

lim
qAI→q∗+

qAI, and the result follows by the continuity of the correctness function on both sides of

q∗.

A.3 Proof of Proposition 2

Proof. The proof follows similarly to the proof of Proposition 1. Fix (qAI, γ, p) so that q̃AI >

γ̃ > p̃ and take q∗ such that γ̃ − p̃ = q̃AI − q̃∗. Since q̃AI > γ̃ > p̃, we can fix such q∗ without

violating the conditions of min{q̃DM, q̃AI} > p̃. This also implies that γ̃ > 0.

From Theorem 1, we know that the optimal strategy for qDM > q∗ is the DM-led one, and

the optimal strategy for qDM < q∗ (but not too small, so that the optimal strategy is not the

AI-led) is the Guided one. The correctness in the first case is simply qDM and in the second

case is CG given in Eq. (1). Similarly to Proposition 1, it is straightforward to verify that

19



lim
qDM→q∗−

CG(qAI, qDM) > lim
qDM→q∗+

qDM. The result follows from the continuity of the correctness

function in each of the regions qDM > q∗ and qDM < q∗.

A.4 Proof of Proposition 3

Proof. Fix (γ, p, qH , qL) such that qH > qL, where q̃H − q̃L < p̃, and (qAI, qDM) = (qH , qL) yields

an optimal Guided strategy with correctness

CG(q
H , qL) = qL + pqH(1− qL)− (1− p)(1− qH)qL

= qH + pqL(1− qH)− (1− p)(1− qL)qH > qH ,

where the first equality follows from the symmetry of the expression w.r.t. qH and qL, and the

inequality follows from the assumption that p̃+ q̃L > q̃H .

Now consider (qAI, qDM) = (qL, qH). Following the proof of Theorem 1, one needs to show

that Ineq. (6b) and Ineq. (6d) hold. First, note that Ineq. (8d) and Ineq. (6d) are identical,

independently of the ordering of (qAI, qDM). So one only needs to show that Ineq. (6b) holds,

i.e., q̃L − q̃H ≤ γ̃ − p̃. This inequality follows from the fact that γ̃ > p̃ and qH > qL. Thus, we

established an optimal DM-led strategy with correctness CDM(q
L, qH) = qH < CG(q

H , qL), as

needed.
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L. Vandewinckele, M. Holmström, F. Löfman, S. Michiels, K. Souris, E. Sterpin, and J. A. Lee

(2021, March). Artificial intelligence and machine learning for medical imaging: a technology

review. Physica medica : PM : an international journal devoted to the applications of physics

to medicine and biology : official journal of the Italian Association of Biomedical Physics

(AIFB) 83, 242–256.

21



Bikhchandani, S., D. Hirshleifer, and I. Welch (1992). A Theory of Fads, Fashion, Custom, and

Cultural Change as Informational Cascades. Journal of Political Economy 100 (5), 992–1026.

Publisher: University of Chicago Press.

Bikhchandani, S., D. A. Hirshleifer, O. Tamuz, and I. Welch (2021). Information Cascades and

Social Learning. SSRN Electronic Journal .

Debo, L. G., C. Parlour, and U. Rajan (2011). Signaling Quality via Queues. Management

Science 58 (5), 876–891. Publisher: INFORMS.

Eyster, E., A. Galeotti, N. Kartik, and M. Rabin (2014). Congested observational learning.

Games and Economic Behavior 87, 519–538. Publisher: Academic Press.

Kanazawa, K., D. Kawaguchi, H. Shigeoka, and Y. Watanabe (2022, October). AI, Skill, and

Productivity: The Case of Taxi Drivers.

Smith, L. and P. Sorensen (2000). Pathological outcomes of observational learning. Economet-

rica 68 (2), 371–398. Publisher: John Wiley & Sons, Ltd.

Smith, L., P. N. Sørensen, and J. Tian (2021, October). Informational Herding, Optimal

Experimentation, and Contrarianism. The Review of Economic Studies 88 (5), 2527–2554.

Varoquaux, G. and V. Cheplygina (2022, April). Machine learning for medical imaging: method-

ological failures and recommendations for the future. npj Digital Medicine 5 (1), 1–8.

Veeraraghavan, S. K. and L. G. Debo (2011). Herding in Queues with Waiting Costs: Ra-

tionality and Regret. Manufacturing and Service Operations Management 13 (3), 329–346.

Publisher: INFORMS.

22


	Introduction
	Related research

	The model
	Main results
	Optimal-strategy characterization
	Key insights
	One-sided externalities


	In conclusion
	Proofs
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3


