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1 Introduction

In scenarios with incomplete information, players often have limited insight into the factors

influencing outcomes. For this reason, an information provider—referred to as an oracle—can

play a pivotal role in shaping players’ strategies by revealing partial information about the

underlying relevant conditions. This partial revelation is akin to the information provided by

various forecasters (ranging from weather and sports to geopolitics), news media organizations,

rating agencies, and even prediction markets. In these cases, external observers convey partial

information to players engaged in strategic interactions.

This paper examines incomplete-information games in which an external oracle publicly dis-

closes information to players, potentially altering the game’s equilibria. Our primary objective

is to explore and characterize the conditions under which one oracle can be said to ‘dominate’

another. To this end, we define a partial order of dominance: One oracle dominates another

if, in every game, the information structure of the former can induce at least the same set of

equilibrium outcomes as the latter. This framework generalizes the classical results of Blackwell

(1951), who focused on comparing signaling structures in decision problems.

The analysis is divided based on the oracles’ signaling capabilities: deterministic and

stochastic. When oracles are limited to deterministic signaling functions, we show that an

oracle dominates another if and only if it can simultaneously match the players’ posterior be-

liefs induced by the other oracle, while accounting for potential redundancies due to players’

private information (see Theorem 1 in Section 4). We refer to this condition as ’Individually

More Informative’ (IMI). Although the IMI condition may seem intuitive at first, it is funda-

mentally different from the refinement condition implied by Blackwell’s criterion for dominance,

as evident from the stochastic characterization. Moreover, in our framework and unlike Black-

well’s result, if two oracles dominate each other under the IMI condition, then they must be

identical (see Theorem 2 in Section 4). We prove this before extending our analysis to the

stochastic setting.

The conditions for dominance in the stochastic setting differ from those in the deterministic

one. When oracles are permitted to use stochastic signaling functions, the resulting posteriors

become more complex. In this case, dominance requires additional criteria that depend on two
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key elements based on the information structures of all players.

The first element is the common knowledge component (CKC), the smallest set, in terms of

inclusion, that all players can agree upon (see Aumann, 1976). Using the structure of CKCs, we

introduce the concept of an information loop, the second key element in our characterization. To

formally define these loops, we first partition the state space into distinct CKCs. An information

loop is then defined as a closed path of states that connects different CKCs through elements

of an oracle’s partition.

For example, assume there are 4 states Ω = {ω1, ω2, ω3, ω4} and two players whose pri-

vate information in given by the following partitions: Π1 = {{ω1, ω2}, {ω3}, {ω4}} and Π2 =

{{ω1}, {ω2}, {ω3, ω4}}. The players’ private information induces two CKCs: C1 = {ω1, ω2} and

C2 = {ω3, ω4}. That is, the two players can agree on each of these two events. See the illustra-

tion in Figure 1. If the oracle’s information is given by the partition F1 = {{ω1, ω3}, {ω2, ω4}},

we say that a loop exists, as the different partition elements of F1 form a closed path between

the two CKCs. Namely, ω1 ∈ C1 and ω3 ∈ C2 are joined by a partition element of F1 and

the same holds for ω2 ∈ C1 and ω4 ∈ C2. This yields a sequence of states, that starts in C1,

transitions to C2 and reverts back again to C1, through different states that serve as entry and

exit points from each CKC.

Ω Π1 Π2

F1

C1 C2

ω1

ω2

ω3

ω4

Figure 1: There are two CKCs {ω1, ω2} and {ω3, ω4}. The oracle’s partition F1 generates a loop (ω1, ω3, ω4, ω2),
which is a closed path connecting the two CKCs using the oracle’s partition elements.

Assuming that an oracle does not generate information loops (which includes the case where

the entire state space comprises a unique CKC), we prove that it dominates the other oracle if
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and only if its partition refines that of the other within every CKC (see Theorem 4 in Section

5.2 and Theorem 5 in Section 5.3). Importantly, this refinement condition does not follow from

the IMI criterion used in the deterministic setting.

At this stage, we also prove that the refinement and dominance notions, given a unique CKC,

are both equivalent to the inclusion condition which states that for every signaling strategy τ2

of Oracle 2, there exists a signaling function τ1 of Oracle 1 such that the set of the players’

posterior beliefs profiles based on τ1 is a subset of that based on τ2. Again, this holds given a

single CKC, which obviously cannot admit information loops.

However, if a loop exists, the characterization becomes more complex. An information loop

imposes (measurability) constraints on the information the oracle can convey. In the previous

example, notice that every signaling function of the oracle over {ω1, ω2}, uniquely defines the

signaling over {ω3, ω4}. Thus, the oracle is not free to signal any information it wants in one

CKC, without restricting its ability to convey different information in the other CKC.

An obvious question that goes to the heart of information loops and our results is why

should we care specifically about the signaling structure over the pairs of states that form the

loop in every CKC? Moreover, why should a loop consist of separate entry and exit points

in every CKC? The answer is that, given a CKC, Bayesian updating depends on the ratio of

signal-probabilities for the different states. Thus, an effective constraint imposes restrictions

over such ratios, thus relating to at least two states in every CKC (while keeping in mind the

refinement condition in every CKC).

To tackle this issue, we need to thoroughly study the properties of information loops, and

the first property is non-informativeness. A loop is called non-informative if, in every CKC

that it intersects, all the states of the loop are in the same partition element of that oracle.

We refer to this as non-informativeness because, conditional on the CKC and loop, the oracle

has no-information to convey to the players. For example, in Figure 1, consider an oracle

with a trivial partition F ′
1 = Ω = {ω1, ω2, ω3, ω4}. This partition yields a non-informative, by

creating a closed path between the two CKCs, as well as partitioning all the states of the loop

(given a CKC) in a single partition element of F ′
1. Building on this notion and assuming that

the partition of Oracle 1 refines that of Oracle 2 in every CKC (as in the previously stated
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characterization), then non-informative loops do not pose a problem for dominance and Oracle

1 dominates the other (see Theorem 7 in Section 5.5).

However, once a loop is informative (i.e., in at least one CKC that it intersects, there are

states in the loop from different partition elements of the oracle; see Figure 2), then we require

additional conditions for characterization. More specifically, in case there are only two CKCs,

an additional condition is that Oracle 2 also has information loops whose states cover Oracle 1’s

loop (the notion of a cover is formally defined in Section 5.4). Using this condition we provide a

characterization for the case of two CKCs (see Proposition 7 in Section 5.6), while the question

of characterization in case of more than two CKCs remains open.

Yet, we should point out that the concept of information loops hints at a significant connec-

tion to Aumann’s theory of common knowledge, from Aumann (1976). This link appears to be

central to understanding how shared and differing information structures impact equilibrium

outcomes in incomplete-information games. For this reason we provide an extensive set of result

concerning information loops (see Section 5.4).

Another property that proves crucial for our analysis is the notion of irreducibility, which

splits to two levels. The first is irreducible loops, which implies that there exists no (smaller)

loop that is based on a strict subset of states taken from the original loop. The second is

referred to as type-2 irreducible loops, and it implies that the loop does not contain four states

from the same partition element of the oracle (again see Figure 2). On the one hand, type-2

irreducibility is a weaker notion compared to irreducible loops, because it allows for a loop

to intersect the same CKC several times, whereas an irreducible loop cannot. On the other

hand, a type-2 irreducible loop must be informative, because it does not allow for the entry

and exit point in every CKC to be in the same partition element of that oracle. In fact, it is

fully-informative because this condition holds in every CKC, rather than in a specific CKC.

The somewhat-delicate understanding of the relations between these loops properties allows

us to achieve another main result: the characterization of equivalent oracles. Formally, we say

that two oracles are equivalent if they simultaneously dominate one another. The character-

ization of equivalence, given in Theorem 8 in Section 6, is based on: (i) equivalence in every

CKC; (ii) equivalence of irreducible-informative loops; and (iii) a cover over loops. To prove
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ω1 ω2

ω3

ω4ω5

ω6

F1(ω2)

F1(ω4)

F1(ω4)

C1

C2C3

Figure 2: An illustration of a fully-informative and irreducible loop, which intersects three CKCs C1, C2 and
C3 with two states in each.

this result, we use type-2 irreducible loops to compare the information of both oracles. Specifi-

cally, we consider the sets of type-2 irreducible loops that intersect a joint CKC (i.e., connected

loops), also taking into account sequential intersections (i.e., the transitive closure) where loop

1 is connected to loop 2 which is then connected to loop 3 and so on. We observe the set of

CKCs for each of these groups and refer to these sets as clusters. These are used as building

blocks in our analysis, and we prove that the information of equivalent oracles must match

on these clusters. This, in turn, provides some insight into possible future characterization of

general dominance between oracles, as well as provides another level of extending the theory of

Aumann (1976) on common knowledge, beyond information loops.

1.1 Relation to literature

The current research aims to extend the classical framework established by Blackwell (1951,

1953), which focuses on comparing experiments in decision problems. In Blackwell’s frame-

work, one experiment (or information structure) dominates another if it is more informative,

enhancing the decision maker’s expected utility across all decision problems. In the context of

games, dominance implies that the information structure of one oracle enables it to replicate

the equilibrium distribution over outcomes induced by the other oracle.

Another connection to Blackwell’s comparison lies in the fact that, in our study, an oracle

can transmit any information through a signaling function, provided it is measurable with

respect to the information it possesses. In this sense, an oracle in our framework functions as
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a generator of experiments, rather than a fixed entity as in Blackwell’s framework. However,

unlike Blackwell’s comparison of experts (see Blackwell, 1951), our approach does not focus on

optimizing the decision maker’s outcome. Instead, we analyze the role of oracles in inducing

various equilibria.

Blackwell’s model was recently extended by Brooks et al. (2024), who compare two informa-

tion sources (signals) that are robust to any external information source and decision problem.

They introduce the notion of strong Blackwell dominance and characterize when one signal

dominates another under this criterion: a signal strongly Blackwell dominates another if and

only if every realization of the more informative signal either reveals the state or refines the

realization of the less informative one.

There are several key differences between their framework and ours. First, while their anal-

ysis focuses on a single decision maker, we study multi-player environments. Second, they

allow for arbitrary private information structures and decision problems; in fact, their charac-

terization is entirely independent of the decision maker’s information. In contrast, our model

assumes fixed private information structures for the players and allows variation only in the

payoff functions of the underlying game. As a result, our analysis is specific to each config-

uration of the players’ information structures: every distinct configuration must be analyzed

separately. A third major difference lies in the role of the Oracle. In their model, the Oracle is a

fixed Blackwell experiment. In contrast, in our setting, the Oracle can generate any experiment

that is measurable with respect to its partition, effectively acting as a generator of Blackwell

experiments.

Beyond Blackwell’s work, this project runs parallel to and is inspired by two additional lines

of research. The first concerns the topic of Bayesian persuasion. Originating from the classic

model of Kamenica and Gentzkow (2011), the literature on Bayesian persuasion explores how

an informed sender should communicate with an uninformed receiver to influence the receiver’s

choices. The central question revolves around how much information—and in some contexts,

when—should the sender disclose to maximize their payoff.1

1See, for example, Hörner and Skrzypacz (2016); Renault et al. (2013); Ganglmair and Tarantino (2014);
Hörner and Skrzypacz (2016); Renault et al. (2017); Ely (2017); Ely and Szydlowski (2020); Che and Hörner
(2018); Bizzotto et al. (2021); Mezzetti et al. (2022). For a survey of this field, see Kamenica (2019).
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The second strand of literature explores the role of an external mediator in games with

incomplete information. The mediator provides players with differential information to co-

ordinate their actions, resulting in outcomes that correspond to various forms of correlated

equilibria, as introduced by Forges (1993). Importantly, in some of these studies, the mediator

does not supply additional information about the realized state but focuses solely on coordinat-

ing the players’ actions. Gossner (2000) examines games with complete information, comparing

mediating structures that induce correlated equilibria. The mediator’s role is exclusively to co-

ordinate the players’ actions. One mediator is considered ”richer” than another if the set of

correlated equilibria it induces is a superset of those induced by the other. The characterization

is based on the concept of compatible interpretation, which aligns with the spirit of Blackwell’s

notion of garbling.

Other studies, closely aligned with the current project’s goals, investigate information struc-

tures in incomplete-information games and establish partial orderings among them. Peski (2008)

analyzed zero-sum games, offering an analogous result to Blackwell’s by characterizing when

one information structure is more advantageous for the maximizer. Lehrer et al. (2010) ex-

amines a common-interest game, comparing two experiments that generate private signals for

players, which may be correlated. The results depend on the type of Blackwell’s notion of gar-

bling used, which varies with the solution concept applied. In a follow-up study, Lehrer et al.

(2013) extended Blackwell’s garbling to characterize the equivalence of information structures

in incomplete-information games, specifically by determining when they induce the same equi-

libria. Likewise, Bergemann and Morris (2016) explores common-interest games, characterizing

dominance through the concept of individual sufficiency—an extension of Blackwell’s notion of

garbling to n-player games.

In this study, we fix the players’ initial information structures and compare oracles that

provide additional information, which in turn influences the players’ beliefs. The key distinction

of our study lies in two main aspects: (a) the information provided by the oracles is public, and

therefore does not serve as a coordinator between the players’ actions, as in various versions

of correlated equilibrium; (b) since an oracle functions as a generator of experiments, we allow

the externally provided information to vary. Additionally, we do not impose any restrictions on
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the type of game, whether it involves a common objective, a zero-sum structure, or any other

form. While previous results align with Blackwell’s garbling, our findings differ significantly

from any version of it.

This approach presents a unique challenge compared to the problem of comparing two fixed

information structures, as explored in previous literature. The distinction becomes evident in

the example in Section 2, where the oracles are evaluated based on the full range of signaling

functions they can generate.

From an applied perspective, in many real-life scenarios, information providers have multiple

ways to share information with the public, making it crucial to compare them as generators of

information.

1.2 The structure of the paper

The paper is organized as follows. In Section 2, we provide a simple example to illustrate

the key concepts of the paper. Section 3 presents the model and key definitions. Section

4 analyzes deterministic oracles, including a characterization of dominance and a proof that

two-sided dominance implies the oracles are identical (given a unique CKC). In Section 5, we

examine stochastic oracles in several stages. First, we introduce a two-stage game, referred

to as a ”game of beliefs,” which serves as a foundational tool for our characterization within

each CKC. Then, Sections 5.2 and 5.3 characterize dominance in the cases of a unique CKC

and multiple CKCs without loops, respectively. Section 5.4 outlines necessary and sufficient

conditions for dominance. In Section 5.6, we provide a characterization of dominance in the

context of two CKCs. Finally, in Section 6 we characterize the equivalence relation between

oracles.

2 A simple example: the rock-concert standoff

To understand these concepts, consider a simple example of competition between two rock

bands.2 Assume two bands, 1 and 2, arrive in the same city during their tours and must decide

2We thank Alon Eizenberg from the Hebrew University and two 1990s rock bands who inspired this example.
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whether to perform on the same day or on different days. The issue arises because the stadiums

in that city are partially open, making bad weather a significant factor that adversely affects

crowd attendance.

Assume there are 200, 000 fans eager to see these bands, with ticket prices fixed at $20 each.

The production cost for each concert is $500, 000, but this cost doubles if attendance exceeds

75, 000 people. Further, assume that each fan attends at most one concert.

On a sunny day, all fans would prefer to attend the concerts, splitting evenly if both bands

perform on the same day. However, under stormy conditions, attendance drops to 20,000 fans,

who again split evenly if both bands perform simultaneously. If the bands choose to perform

on different days, attendance splits such that only 10% of the fans attend the concert on the

stormy day, with the remaining fans attending the other concert.

As it turns out, weather conditions are problematic because a storm is coming either today

or tomorrow. More formally, there are four equally likely states: in states n1 and n2, the storm

arrives today, while in states s1 and s2, the storm arrives tomorrow. Each band has a unique

partition over this state space. Band 1’s partition is Π1 = {{n1, s2}, {n2, s1}}, while Band 2’s

partition is Π2 = {{n1}, {s1}, {n2, s2}}. In simple terms, Band 1 cannot differentiate between

n2 and s2, while Band 2 cannot distinguish between ni and s−i for each i = 1, 2. Additionally,

there are two weather forecasters with the following partitions: F1 = {{n1}, {s1}, {n2, s2}} and

F2 = {{n1, n2}, {s1, s2}}. These information structures are illustrated in Figure 3.

Based on the realized state, the bands engage in the game depicted in Figure 4. Each band

decides whether to perform today, an action denoted by D, or tomorrow, denoted by M . The

payoffs in the matrices are given in hundreds of thousands of dollars, and the bands’ actions

have opposing impacts depending on the state of nature.

Conditional on the state, it is evident that each band has a strictly dominant action: to

perform on the day with good weather. Consequently, the analysis is straightforward. If

both bands know the exact payoff matrix, there is a unique Nash equilibrium. However, this

equilibrium is not necessarily optimal in terms of overall profit, which could be maximized if

the bands coordinated and split the performance dates.

However, if Band 1 knows the exact payoff matrix while Band 2 believes the two matrices

9



Ω Π1 Π2

n1

s1

n2

s2

(a)

The bands’ information

Ω
F2

F1

n1

s1

n2

s2

(b)

The weather forecasters’ information

Figure 3: On the left, Figure (a) illustrates the information structures: Π1 = {{n1, s2}, {n2, s1}} for Band 1
(green) and Π2 = {{n1}, {s1}, {n2, s2}} for Band 2 (orange). On the right, Figure (b) depicts the information
structures F1 = {{n1}, {s1}, {n2, s2}} for Forecaster 1 (red) and F2 = {{n1, n2}, {s1, s2}} for Forecaster 2
(blue). These figures illustrate a unique CKC where neither of the Forecasters’ partitions refines the other.
Nevertheless, Forecaster 1 is individually more informative (IMI) than Forecaster 2, whereas the converse does
not hold. This is because Forecaster 2 cannot replicate the partition F ′

1 = {{n1, s1, s2}, {n2}}.

Band 2
D M

Band 1
D -3,-3 -1, 26
M 26, -1 10, 10

Payoffs in states n1 and n2 (stormy today)

Band 2
D M

Band 1
D 10, 10 26, -1
M -1, 26 -3, -3

Payoffs in states s1 and s2 (stormy tomorrow)

Figure 4: Payoff matrices for sunny and stormy conditions.

are equally likely (and assuming this is common knowledge), an equilibrium exists in which

Band 2 randomizes equally between M and I due to symmetry, and Band 1 selects M under

{n1, n2} and D given remaining states. This equilibrium yields, on aggregate, higher expected

payoffs of $1.8 million for Band 1 and $450, 000 for Band 2.

Now, we examine how the two different forecasters can influence the outcome of this game.

For simplicity, assume that forecasters are restricted to deterministic strategies, meaning they

provide deterministic public signals based on their information. Forecaster 2 has only two

options: either provide no information at all (which, in some cases, leads both bands to perform

in stormy conditions) or fully reveal all relevant information, which results in an expected payoff

of $1 million for each band. Forecaster 1 also has these two options, as fully revealing his private
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information makes the realized state common knowledge between the two bands. In such cases,

we say that Forecaster 1 is individually more informative than Forecaster 2.

However, Forecaster 1 can achieve more than simply matching the beliefs induced by Fore-

caster 2. Specifically, he can signal the partition {{n1, s1}, {n2, s2}}, ensuring that Band 1

is fully informed about the state and the corresponding payoff matrix, while Band 2 receives

no additional information and remains unable to distinguish between n2 and s2. Under these

conditions and given either of the states n2 and s2, the previously described equilibrium, in

which the expected payoffs are 1800 and 950 for Bands 1 and 2 respectively, still exists. Thus,

Forecaster 1 can support a broader set of equilibria while also matching the set of equilibria

induced by Forecaster 2. This exemplifies the partial order of dominance characterized in this

study.

This simple example offers several additional insights. First, the state space comprises

a unique CKC, given the parties’ information. In other words, the smallest set (in terms

of inclusion) that the parties can agree upon is the entire space. However, the forecasters’

partitions do not refine one another, even within this unique CKC, meaning that the IMI

condition does not imply refinement. Moreover, when stochastic signals are allowed, we later

show that neither forecaster dominates the other.3

Second, if this were a decision problem (as in Blackwell, 1951 and Brooks et al., 2024) rather

than a game, both forecasters would be equally beneficial to both parties. In decision problems,

superior information can only improve the expected outcome, and both forecasters could fully

reveal the true state to each party. This highlights a key distinction: the classification in games

is fundamentally different from that in decision problems and does not follow from it.

Third, the ability to induce a broader set of outcomes is distinct from coordination in the

sense of correlated equilibrium (as in Forges, 1993). The process here relies critically on the

forecasters’ private information and how it is disclosed to the players.

3Notably, given a unique CKC, we prove that two-sided IMI implies that the two partitions coincide. See
Section 4.2.1.
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3 The model

A guided game comprises a Bayesian game and an oracle. The oracle’s role is to provide

information that enables a different, and preferably broader, range of equilibria. It does so

through signaling, and our analysis seeks to characterize the extent to which oracles can expand

the set of equilibrium payoffs.

We begin by defining the underlying Bayesian game. Fix a finite set N = {1, 2, . . . , n} of

n ≥ 2 players, and let Ω be a non-empty and finite state space. Every player i has a non-empty

and finite set of actions Ai and a partition Πi over Ω, which represents the information of player

i. Denote A = ×i∈NAi. The utility function of player i ∈ N is given by ui : Ω× A → R.

We begin by defining the underlying Bayesian game. Let N = {1, 2, . . . , n} be a finite set

of n ≥ 2 players, and let Ω denote a non-empty, finite state space. Each player i ∈ N has

a non-empty, finite set of actions4 Ai and a partition Πi over Ω, representing the information

available to player i. Denote the set of action profiles by A = ×i∈NAi. The utility function

for each player i ∈ N is ui : Ω × A → R, which maps states and action profiles to real-valued

payoffs.

To extend the basic game to a guided game, we introduce an oracle who provides public

information before players take their actions. For that purpose, the oracle has a partition

F over Ω, and a countable set S of signals. A strategy of the oracle is an F -measurable

function τ : F → ∆(S) used to transmit information to all players N , where ∆(S) is the

set of all distributions on finite subsets of S. We denote by τ(s|ω) the probability τ(ω)(s)

at which τ transmits the signal s when the realized state is ω. Note that any deterministic

strategy τ : F → S is essentially equivalent to a partition, and we will refer to it as such when

appropriate.

The guided game evolves as follows. First, the oracle publicly announces a strategy τ .

Then, a state ω ∈ Ω is drawn according to a common prior µ ∈ ∆(Ω). Each player i is privately

informed of Πi(ω), which is a set of states containing ω and also an atom of player i’s private

partition. Finally, the signal τ(ω) ∈ S is publicly announced in the case τ is deterministic, or

4In this setting, Ai is independent of the player’s information; however, the current framework can also
accommodate scenarios where it is not.

12



s ∈ S is drawn according to τ(ω) and is publicly announced in the case where τ is stochastic.

Let the join5 Πi ∨ F ′ denote the updated information (i.e., partition) of player i given Πi

and some partition F ′. In case τ is a deterministic function, let µi
τ |ω = µ(·|[Πi ∨ τ ](ω)) ∈ ∆(Ω)

denote player i’s posterior distribution after observing Πi(ω) and τ(ω). In case τ is stochastic,

let µi
τ |ω,s = µ(·|Πi(ω), τ, s) ∈ ∆(Ω) denote player i’s posterior distribution after observing

Πi(ω) and a realized signal s according to τ(ω). Thus, every strategy τ yields an incomplete-

information game G(τ) = (N, (Ai)i∈N , (µ
i
τ )i∈N , (ui)i∈N). Since the state space and the action

sets are finite, the equilibria of the game exist. When there is no risk of ambiguity, we denote

the incomplete-information game without τ by G.

Example 1. Deterministic and stochastic strategies.

To illustrate the difference between deterministic and stochastic strategies, consider an

information structure where Π1 = {{ω1, ω2}, {ω3}}, µ is the uniform distribution on Ω, and

Oracle 1 has complete information. Under deterministic strategies, the feasible posteriors are

generated by either Π1 (oracle provides no additional information) or F1 (complete information).

On the other hand, the set of feasible posteriors under stochastic strategies includes distributions

of the form (p, 1− p, 0) for every p ∈ [0, 1].

3.1 Partial ordering of oracles

To discuss the role of the oracle in the current framework, one needs a relevant solution concept.

Thus, let us define the following notion of a Guided equilibrium, which incorporates the oracle’s

strategy. Formally, let σi : Πi × S → ∆(Ai) be a strategy of player i. A tuple (τ, σ1, . . . , σn) is

a Guided equilibrium if (σ1, . . . , σn) is a Nash equilibrium in the incomplete-information game

G(τ).

The notion of a Guided equilibrium defines a partial ordering of oracles, i.e., a partial

relation over their partitions according to the sets of equilibria. To define this relation, let

NED(G(τ)) ⊆ ∆(Ω×A) be the set of distributions over Ω×A induced by Nash equilibria given

5Coarsest common refinement of Πi and F ′; following the definition of Aumann (1976).
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G and τ .6 Now consider two oracles, Oracle 1 and Oracle 2, and denote the generic partition

and strategy of Oracle j by Fj and τj, respectively. Using these notations we define a partial

ordering of oracles as follows.

Definition 1 (Partial ordering of Oracles). Oracle 1 dominates Oracle 2, denoted F1 ⪰NE F2,

if for every τ2 and game G, there exists τ1 such that NED(G(τ1)) = NED(G(τ2)).

In simple terms, dominance implies that one oracle can mimic the signaling structure of the

other to induce the same equilibria. Note that a direct comparison of the games’ equilibria is

problematic because the players’ strategies depend on the oracles’ signaling functions.

Two points are worth noting here. First, if the players’ information structures were un-

known, one might consider defining the dominance order between oracles in a more flexible

way, allowing for a variety of possible partitions. In that case, the characterization problem

would likely become easier. The challenge in our framework arises from the fact that the

partitions are predetermined.

The second point highlights that Definition 1 compares the equilibria induced by the oracles.

An alternative, weaker condition could involve, for example, an inclusion criterion based on the

set of equilibria or the players’ expected payoffs. We relate to these possibilities in Section

3.2 below. Nevertheless, we use the more general definition to address potential issues that

may arise from different equilibrium-selection processes. Since we do not restrict ourselves

to a specific selection process (which may diverge from the Pareto frontier), a broader set of

equilibria might not always benefit the players. This approach also addresses complications

that could emerge in a parallel setup, if oracles were to maximize some goal function.

Definition 1 also allows us to define equivalent oracles. Formally, we say that Oracle 1 is

equivalent to Oracle 2, denoted F1 ∼ F2, if each Oracle dominates the other. We provide a

necessary condition for equivalent oracles in Section 5.

6Note that a Nash equilibrium (σ∗
i , ..., σ

∗
n) induces a probability distribution over Ω × A. Specifically, fix ω

and an action profile a, the probability of (ω, a) under the equilibrium strategy (σ∗
i , ..., σ

∗
n) and the signaling

function τ is given by µ(ω)
∑

s∈S τ(s|ω)
∏n

i=1 σ
∗
i (ai|Πi(ω), s). Since multiple equilibria can exist, NED(G(τ)) is

a subset of ∆(Ω×A).
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3.2 Alternative definitions of dominance

One could consider other notions of dominance, which might involve different types of com-

parisons between outcomes—such as combinations of (state, action-profiles)—or comparisons

based on equilibrium payoffs.

An alternative definition of dominance could be based on an inclusion criterion concerning

the distribution over outcomes. Specifically, Oracle 1 dominates Oracle 2 in the inclusive sense,

if and only if, for every τ2 and game G, it holds that

NED(G(τ2)) ⊆
⋃
τ1

NED(G(τ1)).

This is a weaker condition than the one currently used. It implies that Oracle 1 dominates

Oracle 2 if any equilibrium distribution of outcomes induced by τ2 can be generated by some

τ1. Unlike the condition in Definition 1, this alternative allows for different distributions over

outcomes induced by τ2 to be generated by different τ1 strategies.

Another approach to the issue of dominance could involve comparisons between equilibrium

payoffs. Specifically, for any game G and a signaling function τ , let NEP(G(τ)) denote the set

of Nash-equilibrium expected-payoffs profiles induced by τ . Oracle 1 is said to dominate Oracle

2 in the payoff sense if, for every τ2 and game G, there exists a τ1 such that

NEP(G(τ1)) = NEP(G(τ2)).

Alternatively, Oracle 1 dominates Oracle 2 in the inclusive-payoff sense if, for every τ2 and game

G, it holds that

NEP(G(τ2)) ⊆
⋃
τ1

NEP(G(τ1)).

The concepts related to equilibrium outcome distributions imply their corresponding payoff-

related notions. Definitions based on equilibrium outcome distributions are better suited for

oracles—such as the Federal Reserve—that prioritize outcomes, such as individuals’ actions and

their aggregate effects, over individual payoffs. Conversely, definitions grounded in equilibrium

payoffs are more appropriate for contexts where the primary focus is on individual payoffs.
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An interesting direction for future research would be to identify the precise settings, if any,

where the various definitions diverge. We leave this question open for further investigation. In

the following, we adopt Definition 1.

3.3 The Oracles as players

Another way to compare oracles is to treat them as players. In the spirit of sender–receiver

games, the oracle takes the role of the sender—responsible for providing information—while

the other players act as receivers, making decisions based on both their private information and

the signals they receive. In this framework, the oracle’s objective is to maximize its equilibrium

payoff in the resulting game of incomplete information. One could then compare two oracles

by saying that one is more informative than the other if, in every such game, the former always

secures a (weakly) higher equilibrium payoff than the latter.

However, this approach has several drawbacks relative to ours. First, such games typically

admit multiple equilibria, making it unclear which equilibrium payoff should be the basis for

comparison. Second, equilibrium analysis generally presumes that players’ information par-

titions are common knowledge. In particular, it assumes that the oracles know the private

information structures of the players. In contrast, our approach imposes significantly weaker

assumptions: one oracle can often imitate another without requiring full knowledge of players’

information structures. In fact, even identifying the components that are common knowledge

is sometimes unnecessary. While our comparison focuses exclusively on the equilibrium out-

comes of the game played by the players, we assume that the private information structures are

common knowledge among the players themselves—but not necessarily known to the oracle.

The third advantage of our approach is that, by focusing on the equilibrium outcomes of

the game played by the agents, we can analyze the information structures of the oracles inde-

pendently of any objectives they might have. This enables us to concentrate on informational

aspects and to introduce new concepts into the model, such as informational loops and clusters

(see Sections 5.4 and 6).
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3.4 The case of one decision maker

3.4.1 The Oracle contributes to DM’s private information

To illustrate a key contribution of this paper and connect it to the current body of knowledge,

consider a decision problem with one decision-maker (DM) and two oracles. When Oracle

i employs a signaling strategy τi, the DM also gains access to his own partition Π. The

combination of the signaling strategy τi and the partition Π induces a Blackwell experiment

Mi(τi,Π).

Example 2. One decision maker and two oracles.

Consider the uniformly distributed state space Ω = {ω1, ω2, ω3, ω4}, with a single DM whose

private information is represented by the partition Π = {{ω1, ω2}, {ω3, ω4}}, while the oracles’

partitions are given by F1 = {{ω1, ω4}, {ω2}, {ω3}}, and F2 = {{ω1, ω3}, {ω2, ω4}}. This infor-

mation structure is illustrated in Figure 5.

Ω Π

ω1

ω2

ω3

ω4

(a)

The DM’s information

Ω

F2

F1

ω1

ω2

ω3

ω4

(b)

The oracles’ information

Figure 5: On the left, Figure (a) illustrates the information structure of the DM (blue). On the right, Figure
(b) portrays the information structure of Oracle 1 (orange) and Oracle 2 (green).
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Now, consider the stochastic strategy τ2 given in Figure 6.

τ2(s|ω) s1 s2 s3
ω1 0 1/2 1/2
ω2 1/4 3/4 0
ω3 0 1/2 1/2
ω4 1/4 3/4 0

Figure 6: A stochastic F2-measurable signaling strategy of Oracle 2.

Combined with Π, this signaling strategy τ2 is equivalent to the following Blackwell experi-

ment e, given in Figure 7.

e(s|ω) s1, L s1, R s2, L s2, R s3, L s3, R
ω1 0 0 1/2 0 1/2 0
ω2 1/4 0 3/4 0 0 0
ω3 0 0 0 1/2 0 1/2
ω4 0 1/4 0 3/4 0 0

Figure 7: M2(τ2,Π) - the matrix consisting of the probabilities.

Blackwell’s Theorem states that, given a signaling strategy τ2 employed by Oracle 2, the

DM can achieve at least as much as he could by obtaining information from Oracle 1 with

signaling strategy τ1 if and only if there exists a stochastic matrix G (the garbling) such that:

M1(τ1,Π)G = M2(τ2,Π).

This fact immediately implies the following extension of Blackwell’s Theorem:

Observation 1. Suppose there is a single DM with a partition Π and two oracles with partitions

F1 and F2, respectively. Then, F1 ⪰NE F2 if and only if, for every signaling strategy τ2 of Oracle

2, there exists a signaling strategy τ1 of Oracle 1 such that M1(τ1,Π)G = M2(τ2,Π), for some

garbling matrix G.

Note that in the case of a single decision maker, equilibrium implies that the equilibrium

payoff is the best achievable. In addition, the statement that for every signaling strategy τ2 of

Oracle 2, there exists a signaling strategy τ1 of Oracle 1 such that M1(τ1,Π)G = M2(τ2,Π), for

some garbling matrix G is equivalent to F1 ⪰NE F2.
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The stochastic matrix Mi(τi,Π) is the combination of two separate stochastic matrices,

τi and the one corresponding to Π. For Blackwell dominance, we considered M1(τ1,Π) and

M2(τ2,Π). Another possibility is to consider the Blackwell dominance between τ1 and τ2 first.

If τ1 Blackwell dominates τ2 and both τ1 and τ2 are independent of Π, then M2(τ2,Π) Blackwell

dominates M2(τ2,Π) (see Theorem 12.3.1 of Blackwell and Girshick (1954)).7 Nevertheless,

the reverse does not hold. Consider, for instance, that Π is fully informative, then M1(τ1,Π)

Blackwell dominates M2(τ2,Π), but it does not imply that τ1 dominates τ2. Hence, dominance

in terms ofM1(τ1,Π) andM2(τ2,Π) is weaker than the dominance in terms of signaling functions

τ1 and τ2.

This characterization of dominance is expressed in terms of stochastic matrices. Specifically,

the question of whether M2(τ2,Π) can be obtained from M1(τ1,Π) by taking its product with

a garbling matrix reduces to a problem about transforming one set of stochastic matrices

into another. However, this characterization is not directly expressed in terms of the model’s

primitives, namely the information partitions.

In this paper, we focus on comparing information structures rather than analyzing the alge-

braic properties of the corresponding sets of matrices. Our primary objective is to examine the

relationship between two oracles based on the model’s primitives, specifically their partitions.

Referring to Example 2, we later demonstrate that Oracle 2 cannot imitate Oracle 1. This nat-

urally raises the question: why? What is the underlying reason? Simultaneously, the second

objective of this paper is to extend Blackwell’s model to a setting with multiple players.

3.5 Common objectives

The game-theoretic setting closest to a one-agent decision problem is one in which all players

share a common objective.8 A natural conjecture is that one oracle induces at least as high a

payoff as another in any common-objective game if and only if its partition refines that of the

other. It turns out that this is not the case.

Example 3.

7Note that for this result to hold, Π is fixed and it is independent of τ1 and τ2.
8As this section serves primarily as a comment, we do not undertake a detailed discussion of the definition

of a common objective. For our purposes, we assume that all players’ payoff functions are identical.
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In this example, there are four states and two. The following Figure 8 illustrates the

knowledge structures of the players as well as those of the two Oracles.

Ω Π1 Π2

ω1

ω2

ω3

ω4

(a)

The players’ information

Ω F1

F2

ω1

ω2

ω3

ω4

(b)

The oracles’ information

Figure 8: On the left, Figure (a) illustrates the information structure of player 1 (blue) and player 2 (red). On
the right, Figure (b) portrays the information structure of Oracle 1 (orange) and Oracle 2 (green).

It is clear that the partition of Oracle 2 refines that of Oracle 1. Now consider a game where

both player have two actions: D and M . and the payoffs are given by the following matrices.

Player 2
D M

Player 1
D 1,1 0,0
M 0,0 0,0

ω1

Player 2
D M

D 0,0 0,0
M 0,0 1,1

ω2

Player 2
D M

D 0,0 0,0
M 1,1 0,0

ω3

Player 2
D M

D 0,0 1,1
M 0,0 0,0

ω4

Figure 9: Payoff matrices for each ω

The best common payoff is attained when both players know the realized state. Oracle

2, who is fully informed, can simply reveal the true state. Oracle 1, who cannot distinguish

between ω1 and ω3, can nonetheless reveal his information; combined with the players’ private

knowledge, this is sufficient to fully disclose the state.9

While our focus is not on comparing oracles based on the highest equilibrium payoffs they

can induce, the following proposition provides an affirmative answer to a question naturally

9This example provides a concrete instance of Theorem 5.
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motivated by this example.

Proposition 1. In any common-objective game, Oracle 1 can induce an equilibrium expected

payoff at least as high as any induced by Oracle 2 if and only if, for every player i, the combined

information of F1 and Πi refines that of F2 and Πi.

The proof is deferred to the Appendix and relies on terminology introduced later in the

paper.

4 Partial ordering of deterministic oracles

Our first main result characterizes the notion of dominance among oracles, assuming they are

restricted to deterministic strategies. That is, throughout this section, we only consider oracles

that use deterministic functions, namely τi : Fi → S for every oracle i, and we can relate to

every such strategy as a partition (as previously noted).

The characterization is based on the ability of one oracle to simultaneously match the

information of each player, for any given strategy of the other oracle. More formally, we say

that Oracle 1 is individually more informative (IMI) than Oracle 2, if for every strategy τ2,

there exists a strategy τ1 that simultaneously matches the posterior partition of every player i.

Definition 2. Oracle 1 is individually more informative than Oracle 2, denoted F1 ⪰(µi)i F2, if

for every deterministic τ2, there exists a deterministic τ1 such that Πi ∨ τ1 = Πi ∨ τ2 for every

player i.

In other words, one oracle is more informative than another if it can always ensure that

every player has the same information as provided by the other oracle, taking into account

the player’s private information and the publicly available signal (restricted to deterministic

signaling functions). In other words, Oracle 1 only needs the ability to match the information

that Oracle 2 transmits simultaneously to each player, considering the redundancies given the

private information of the players. A different way of defining the same relation is through

partitions’ refinements, as given in the following observation.
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Observation 2. Oracle 1 is individually more informative than Oracle 2 if and only if for

every F ′
2 ⊆ F2,

10 there exists F ′
1 ⊆ F1 such that Πi ∨ F ′

1 = Πi ∨ F ′
2, for every player i.

Note that Observation 2 follows directly from Definition 2 because every Fi-measurable

deterministic strategy τi induced a sub-partition F ′
i of Fi and vice versa. Nevertheless, what

should be clear is that the notion of IMI differs from the notion of refinement, as the following

example illustrates.

Example 4. Individually More Informative versus refinement.

The partial ordering generated by the notion of “individually more informative than” need

not coincide with the notion of “finer than”. Consider, for example, the three partitions Π1 =

{{ω1, ω2}, {ω3, ω4}}, F1 = {{ω1, ω2, ω3}, {ω4}} and F2 = {{ω1, ω2}, {ω3}, {ω4}}. Note that F2

strictly refines F1 and Π1, but Oracle 1 remains individually more informative than Oracle 2.

This is illustrated in Figure 10. Nevertheless, in Section 4.2.1 we prove that if F1 is IMI then

F2 and vice versa, it implies that the two partitions do partially coincide.

Individually More Informative versus Refinement

Ω

Π1

F2

F1

ω1

ω2

ω3

ω4

Figure 10: The notion of “individually more informative than” does not imply “finer than”, though the latter
does imply the former. In this figure, F2 (red) strictly refines F1 (green) and Π1 (blue), but for every deterministic
τ2, there exists a deterministic τ1 such that Π1 ∨ τ1 = Π1 ∨ τ2, so F1 is individually more informative than F2.

One can also bridge the gap between the notions of IMI and refinement by considering the

possibility that the players’ partitions are not fixed.11 In other words, we can also consider the

10A partition F ′
2 is a subset of partition F2 if the σ-field generated by F ′

2 is a subset of the σ-field generated
by F2.

11This resembles the condition of strong Blackwell dominance, in the context of decision problems, in Brooks
et al. (2024).
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possibility that Oracle 1 is IMI than Oracle 2 for any set of the players’ partitions. Once we

account for all possible partitions, we must also account for the trivial partition, so that Oracle

1 must match any deterministic strategy of Oracle 2. This implies that F1 refines F2, at least

weakly.

4.1 First characterization result - deterministic oracles

Our first main result, given in Theorem 1 below, presents an equivalence between oracle dom-

inance and the notion of individually more informative. Specifically, we prove that one oracle

dominates another if and only if it is individually more informative. The proof is constructive.

We assume that Oracle 1 is not more informative than Oracle 2, and depict a game such that

the players’ expected payoffs given a deterministic strategy τ2 differ from their expected payoffs

for every deterministic strategy τ1. The game is constructed such that a strictly more infor-

mative τ1, in the sense that Πi ∨ τ1 refines Πi ∨ τ2 for some player i, yields a strictly higher

expected payoff for the players, whereas a (strictly) less informative τ1 yields a strictly lower

expected payoff. (Unless stated otherwise, all proofs are deferred to the Appendix.)

Theorem 1. Assume that oracles are deterministic. Then, Oracle 1 dominates Oracle 2 if and

only if Oracle 1 is individually more informative than Oracle 2.

Though the proof of Theorem 1 is deferred to the appendix, let us provide some intuition for

it. The first derivation is straightforward—if Oracle 1 can simultaneously match the information

available to every player given τ2, then the sets of equilibria coincide. We emphasize that

Oracle 1 actually matches the information conveyed by Oracle 2, so the set of equilibria can be

preserved by Oracle 1, even if, for instance, there exists a specific equilibrium selection process

that influences the players’ expected payoffs in one way or another.

Proving the reverse statement is a bit more difficult. To gain some intuition for this result,

consider a single-player decision problem. If Oracle 1 is not individually more informative than

Oracle 2, then there exists a strategy τ2 such that for every τ1 there are two possibilities: either

Π1∨ τ1 strictly refines Π1∨ τ2, or there exists an element of Π1∨ τ1 that intersects two elements

of Π1 ∨ τ2.
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For this purpose, we design a game based on the partition elements of Π1 ∨ τ2. Namely, for

every element B in Π1 ∨ τ2, take all permutations p : B → {1, 2, . . . , |B|}. The player’s action

set is the set of all such permutations. Once a state ω is realized and an action p is chosen,

the player receives a payoff that depends on p(ω) in case p is supported on the realized state,

or a very low negative payoff otherwise. Figure 11 below depicts a specific example for this

payoff function given a uniform distribution on four possible states and two partition elements

in Π1 ∨ τ2. Thus, if Π1 ∨ τ1 strictly refines Π1 ∨ τ2, the player can secure a strictly higher

expected payoff, and if an element of Π1 ∨ τ1 intersects two disjoint elements of Π1 ∨ τ2, the

player receives a very low expected payoff. Either way, expected payoffs are either higher or

lower given τ1, relative to τ2, and the result follows.

An example with 4 states and two partition elements in Π1 ∨ τ2

ω1 ω2 ω3 ω4

a1 1 2 3 −242

a2 1 3 2 −242

a3 2 1 3 −242

a4 2 3 1 −242

a5 3 1 2 −242

a6 3 2 1 −242

a7 −242 −242 −242 1

Figure 11: Assume that Ω = Π1 = {ω1, ω2, ω3, ω4} and µ is the uniform distribution. Further assume that
Π1 ∨ τ2 consists of two elements B1 = {ω1, ω2, ω3} and B2 = {ω4}. So, there are 6 permutations/actions for B1

and a single one for B2. If τ1 = {{ω1, ω2}, {ω3}, {ω4}}, then the player can secure a strictly higher expected
payoff, and if τ1 = {{ω1, ω2}, {ω3, ω4}} the player would get −242 with positive probability, thus generating a
strictly lower expected payoff.

Remark 1. We repeatedly use the fact that if the players’ expected payoffs in equilibrium

differ when following τ1 instead of τ2, then NED(G(τ1)) ̸= NED(G(τ2)) for the specified game

G. This holds because µ is fixed, meaning that every element in ∆(Ω × A) determines the

players’ expected payoffs in the corresponding equilibrium. The reverse deduction, however, is

not necessarily true, as different such distributions may, in fact, yield the same expected payoffs.

Remark 2. In situations where the information available to the players is unknown, a rea-

sonable definition of dominance is that one oracle dominates another if Definition 1 holds,

regardless of the players’ knowledge. Considering the case where the players have no private
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information, Theorem 1 implies that this notion of dominance is equivalent to refinement.

Remark 3. Note that Theorem 1 is consistent with Proposition 1 in the setting of common-

objective games. The distinction is that Proposition 1 concerns the best (i.e., most preferred)

equilibrium outcome, whereas Theorem 1 deals with the entire set of equilibrium outcomes in-

duced by the Oracles.

The proof of Theorem 1 shows that if Oracle 1 is not individually more informative than

Oracle 2, then Oracle 1 does not dominate Oracle 2. The constructed game (in the proof of

Theorem 1) can be slightly modified by aggregating the players’ payoffs into a common objective,

yielding a common-objective game in which there exists an equilibrium distribution induced by

Oracle 2 that cannot be induced by Oracle 1.

4.2 Common knowledge components

Theorem 1 characterizes dominance (under deterministic signaling functions) using the notion

of IMI, and Example 4 shows that if F1 is IMI than F2 it does not imply that F1 refines F2.

Nevertheless, Example 4 does show that F1 refines F2 in every information set of player 1. That

is, given an element of player 1’s partition, F1 refines F2. This raises the general question of

whether the notion of IMI leads, in some way, to a refinement of partitions while taking into

account the players’ private information.

To study this aspect in the context of games (rather than decision problems as in Blackwell

(1951, 1953) and Example 4 here), we first need to define the notion of a “Common Knowledge

Component”. Following Aumann (1976), an event E ⊆ Ω is a common knowledge component

(CKC) if E is common knowledge (among all players) given some ω ∈ E, and there is no

event E ′ ⊊ E which is also common knowledge given some ω′ ∈ E ′. Formally, an event E is a

CKC of the partitions Π1,Π2, . . . ,Πn if it is an element in the meet
∧n

i=1Πi, which is the finest

common coarsening of all the partitions. For example, Figure 10 depicts two CKCs: {ω1, ω2}

and {ω3, ω4}.

Regarding players’ payoffs, their sole concern is the information available within each CKC.

Moreover, all possible posteriors within a given CKC are derived collectively from the players’

private and public signals within that CKC. This implies that players’ expected payoffs can be
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decomposed separately across different CKCs. As a result, the impact of each oracle can be

analyzed independently within each CKC.

Using this definition, we can now debate the general hypothesis of whether an IMI oracle

also has a finer partition in every CKC. The answer for this question is no. The following

example shows that even in the case of a unique CKC, the fact that Oracle 1 is IMI than

Oracle 2 does not imply that F1 refines F2.

Example 5. IMI does not imply refinement in every CKC, and refinement in every CKC does

not imply IMI.

To see that IMI does not imply refinement in every CKC, consider the information structure

given in Figure 12. It depicts a unique CKC that covers the entire state space, such that

Π1 = {{ω1, ω4}, {ω2}, {ω3}}, Π2 = {{ω1}, {ω2}, {ω3, ω4}}, and Π3 = {{ω1}, {ω2, ω3}, {ω4}}.

One can see that there exists a unique CKC, Ω, as the finest common coarsening of all players’

partitions is Ω. The oracles, however, have the following partitions: F1 = {{ω1, ω2}, {ω3}, {ω4}}

and F2 = {{ω1, ω3}, {ω2, ω4}}.

Oracle 1 can signal the partition F ′
1 = {{ω1, ω2, ω3}, {ω4}}, which provides complete infor-

mation to players 1 and 2 but provides no information to player 3. Oracle 2 cannot do the same,

because any information provided by Oracle 2 (other than the trivial set Ω) gives all players

complete information. Thus, Oracle 1 is IMI than Oracle 2 because Oracle 1 can provide full

information to all players simultaneously, whereas Oracle 2 is not IMI than Oracle 1. Note that

neither of the two partitions is finer than the other.

Another aspect of this example, which resonates with the key insight of the stochastic

setting in Section 5, is that there exists a stochastic strategy τ2 that Oracle 1 cannot imitate.

Specifically, consider the stochastic strategy τ2 given in Figure 13. One can verify that there

exists no τ1 that yields the same vectors of posteriors as the stated strategy τ2, and this hinges

on the fact that F1 does not refine F2. A broader discussion of this issue is given in Example 6

at the beginning of Section 5.

To demonstrate that refinement in every CKC does not imply IMI, consider the following

example with two players whose partitions are Π1 = {{ω1, ω2}, {ω4, ω5}, {ω3, ω6}} and Π2 =

{{ω1, ω2}, {ω3, ω4}, {ω5, ω6}}. In this case, there are two CKCs, {ω1, ω2} and {ω3, ω4, ω5, ω6}.
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Ω Π1 Π2

ω1

ω2

ω3

ω4

Ω Π3

ω1

ω2

ω3

ω4

(a)

The players’ information

Ω
F2

F1

ω1

ω2

ω3

ω4

(b)

The oracles’ information

Figure 12: On the left, Figure (a) illustrates the information structures: Π1 = {{ω1, ω4}, {ω2}, {ω3}} of player
1 (blue); Π2 = {{ω1}, {ω2}, {ω3, ω4}} of player 2 (red); and Π3 = {{ω1}, {ω2, ω3}, {ω4}} of player 3 (black). On
the right, Figure (b) portrays the information structures F1 = {{ω1, ω2}, {ω3}, {ω4}} of Oracle 1 (orange) and
F2 = {{ω1, ω3}, {ω2, ω4}} of Oracle 2 (green). This illustrates a unique CKC in which neither oracle refines the
other. Nevertheless, F1 is IMI than F2 whereas the converse is not true, because Oracle 2 cannot replicate the
partition F ′

1 = {{ω1, ω2, ω3}, {ω4}}.

τ2(s|ω) s1 s2
ω1 1/3 2/3
ω2 2/3 1/3
ω3 1/3 2/3
ω4 2/3 1/3

Figure 13: A stochastic F2-measurable strategy of Oracle 2.

Next, assume the two oracles have the following partitions, F1 = {{ω1, ω3, ω4}, {ω2, ω5, ω6}},

F2 = {{ω1, ω2}, {ω3, ω4}, {ω5, ω6}}, as illustrated in Figure 14. Observe that in every CKC, F1

refines F2.

Now consider a completely revealing, deterministic strategy τ2 that maps the three different

partition elements of F2 to three different signals: τ2(s1|ω1) = τ2(s1|ω2) = 1, τ2(s2|ω3) =

τ2(s2|ω4) = 1, and τ2(s3|ω5) = τ2(s3|ω6) = 1. Can Oracle 1 produce a strategy signaling

function τ1 such that Πi ∨ τ1 = Πi ∨ τ2 for every player i?

Note that under τ2, neither player can distinguish ω1 from ω2. Therefore, in order for τ1

to satisfy Πi ∨ τ1 = Πi ∨ τ2 for every i, the strategy τ1 must map all F1 partition elements

to the same signal. Consequently, under τ1, Player 1 cannot distinguish ω4 from ω5, which is

achievable given τ2. We therefore conclude that Oracle 1 is not IMI than Oracle 2, even though
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F1 refines F2 in every CKC. However, in the special case where Ω consists of a single CKC,

refinement does imply IMI.

Ω

F1

F2

ω1

ω2

ω3 ω4

ω5 ω6

Figure 14: Refinement in every CKC does not imply IMI. Suppose Π1 = {{ω1, ω2}, {ω4, ω5}, {ω3, ω6}} and
Π2 = {{ω1, ω2}, {ω3, ω4}, {ω5, ω6}}. There are two CKCs, {ω1, ω2} and {ω3, ω4, ω5, ω6}. Consider F1 (orange)
and F2 (teal) depicted in the figure. Despite F1 refines F2 in every CKC, F1 is not individually more informative
than F2.

4.2.1 Two-sided IMI implies equivalence in every CKC

Though we substantiated that an IMI oracle need not have a finer partition in every CKC, this

does hold in case both oracles dominate one another, under deterministic signaling strategies.

The following theorem provides this equivalence by stating that, given a specific CKC, both

oracles dominate each other if and only if their partitions coincide.

Theorem 2. Fix a unique CKC. Then, Fi is IMI than F−i for every Oracle i if and only if

F1 = F2.

In other words, the theorem asserts that the partitions F1 and F2 are equivalent in every

CKC if and only if they are mutually IMI within that CKC, given any fixed set of players’

partitions. This aligns with our previous observation in Example 4 that IMI with respect to

any set of partitions implies refinement. As a result, the issue of CKCs arises naturally in the

context of deterministic oracles and becomes even more significant when studying stochastic

ones, as examined in Section 5.
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5 Partial ordering of (stochastic) oracles

In this section we characterize dominance among oracles given they can exercise general sig-

naling strategies, not restricted to deterministic ones. This goal is achieved in several gradual

steps. In Section 5.1 we describe a two-stage game, entitled “a game of beliefs”. Given a profile

p of probability distributions, the players’ expected payoffs in this game are maximized if and

only if their individual beliefs match p. We use the game of beliefs to show that if an oracle

dominates another, he must be able to produce the same joint posteriors as the other oracle.

In Section 5.2 we consider a set-up with a unique CKC and show that Oracle 1 dominates

Oracle 2 if and only if F1 refines F2. In Section 5.3 we introduce the concept of information

loops between CKCs. In general, an Fi-loop is a closed path among different CKCs, connected

through information sets of Oracle i. In case there are no such loops, we extend the result

described in Section 5.2, and prove that oracle-dominance is equivalent to partition refinement

in every CKC. In Section 5.5 we provide necessary and sufficient conditions for dominance, in

general. In Section 5.6 we connect the stated (necessary and sufficient) conditions in a setting

with two CKCs, providing a characterization for this set-up as well.

Before we proceed with the aforementioned road map, we start with a simple example that

illustrates the difference between the deterministic and the stochastic settings. In the following

two-player set-up, we show that even if Oracle 1 is IMI than Oracle 2, it does not mean that

Oracle 1 can match the posteriors that Oracle 2 generates under stochastic strategies (whereas

this can be achieved under deterministic strategies). This example also resonates with the key

issue in Example 5, showing that IMI does not imply refinement in every CKC.

Example 6. IMI is insufficient under stochastic oracles.

The ordering generated by the notion of IMI need not hold when we transition to stochas-

tic strategies. Consider, for example, the following uniformly distributed state space Ω =

{ω1, ω2, ω3, ω4}, with two players whose private information is given by the two partitions

Π1 = {{ω1, ω2}, {ω3}, {ω4}} and Π2 = {{ω1}, {ω2}, {ω3, ω4}}. The oracles, to differ, have the

following partitions F1 = {{ω1, ω4}, {ω2, ω3}} and F2 = {{ω1, ω3}, {ω2, ω4}}. This information

structure is illustrated in Figure 15.
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Ω Π1 Π2

ω1

ω2

ω3

ω4

(a)

The players’ information

Ω

F2

F1

ω1

ω2

ω3

ω4

(b)

The oracles’ information

Figure 15: On the left, Figure (a) illustrates the information structure of player 1 (blue) and player 2 (red). On
the right, Figure (b) portrays the information structure of Oracle 1 (orange) and Oracle 2 (green).

First, assume that every Oracle i is restricted to a deterministic Fi-measurable strategy.

Thus, every oracle can either convey no information, i.e., a constant signaling strategy, or

he can reveal his partition element, thus ensuring that all players have complete information.

Therefore, we can say that Oracle 1 is IMI than Oracle 2, and vice versa.

Now, consider the stochastic strategy τ2 given in Figure 16. Given ω1 and assuming s2 is

realized, the posteriors of players 1 and 2 are µ1
τ2|ω1,s2

= (2/5, 3/5, 0, 0) and µ2
τ2|ω1,s2

= e1 =

(1, 0, 0, 0), respectively.12

τ2(s|ω) s1 s2 s3
ω1 0 1/2 1/2
ω2 1/4 3/4 0
ω3 0 1/2 1/2
ω4 1/4 3/4 0

Figure 16: A stochastic F2-measurable strategy of Oracle 2.

To mimic this joint posterior, there must exist a signal s4 such that τ1(s4|ω1) = α > 0 and

τ1(s4|ω2) = 3
2
α. However, τ1 is F1-measurable, so τ1(s4|ω4) = α and τ1(s4|ω3) = 3

2
α. Hence,

given ω3 and assuming s4 is realized, we get a joint posterior of µ1
τ1|ω3,s4

= e3 = (0, 0, 1, 0) and

12We use ei to denote the vector whose ith coordinate is 1, while all other coordinates equal 0.
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µ2
τ1|ω3,s4

= (0, 0, 3/5, 2/5), which does not exist in the support of τ2. So, although Oracle 1 is

IMI than Oracle 2 under deterministic strategies, he cannot convey the same information under

stochastic ones.

Note that the players’ partitions form two CKCs, the first is {ω1, ω2} and the second {ω3, ω4}.

In every CKC, every oracle refines the other, so each of them can mimic the other, even under

stochastic strategies, in that CKC. Yet, the example shows that one cannot extend this result

to the entire state space.

This raises the question of the fundamental difference between the deterministic and stochas-

tic settings. This issue should be addressed on two levels: within every CKC and between CKCs.

Example 5 suggests that, under stochastic signaling functions, one cannot restrict the discus-

sion to IMI alone but must require that F1 refines F2 within every CKC. Example 6 further

complicates this problem by demonstrating that even a refinement within every CKC may not

be sufficient.

The critical distinction arises from the significance of the joint profile of posteriors. The

induced Bayesian game and its equilibria depend not only on the players’ marginal posteriors

but also on the joint profile of posteriors. In the deterministic setup, there is a unique public

signal in every state, leading to a unique posterior for each player. Consequently, the IMI

condition ensures that the profiles of posteriors coincide and the dominant oracle induces the

same Bayesian game as the other oracle. However, this is not necessarily the case in the

stochastic setting, where multiple public signals can induce various marginal posteriors in each

state. This poses a challenge both within and across CKCs.

The fact that every state has potentially multiple signals allows the oracles to use the

same signals, with different weights, across various states. The basic structure of the players’

partitions is not rich enough to cover all the information that the oracles can convey this way.

Namely, one cannot use the players’ interim partitions (i.e., given the information conveyed

by the oracles), to cover all feasible profiles of posteriors, rather than compare these profiles

directly, for every signaling function. Thus, one oracle can dominate another if the former can

mimic every signaling function of the latter, and this necessitates refinement within CKCs, as

well as a supplementary condition across CKCs (based on the concept of loops).

31



5.1 A game of beliefs

In this section, we construct a two-stage game for every profile of posteriors p, which we refer

to as a game of beliefs. The key property of this game is that the sum of equilibrium expected

payoffs is maximized if and only if players adhere to the specified profile of beliefs p. Therefore,

if one oracle can support that profile of posteriors, the only way for the other to match the

players’ expected payoffs in equilibrium is to also induce p. We repeatedly use this game in

Section 5 to characterize dominance among oracles.

Formally, fix a profile of probability distributions p = (p1, . . . , pn) ∈ (∆(Ω))n, and consider

the following game G(p). The actions and utility of every player i are Ai = {ω ∈ Ω|piω > 0}

and

ui(a, ω|p) = Ri(ai, ω|p)−
2

n− 1

∑
j ̸=i

Rj(aj, ω|p)1{ω∈Aj},

respectively, where the function Ri(ai, ω|p), for every player i, is defined by

Ri(ai, ω|p) =


−2, if ω /∈ Ai,

1
piω
, if ai = ω ∈ Ai,

0, otherwise.

In simple terms, every player i aims to match the realized state ω, and in any case would suffer

a penalty of −2 if the realized state does not have a strictly positive probability according to

p. Note that the utility function of every player i also depends on the actions of each player

j ̸= i, but Rj is independent of player i’s actions. The game yields to following result.

Proposition 2. Consider the game G(p). If p represents the players’ actual beliefs, then the

expected equilibrium payoff of every player is −1. However, if there exists a player i with a

belief qi ̸= pi, then the aggregate expected payoff (over all players) in equilibrium is strictly

below −n.

The result given in Proposition 2 is rather straightforward. If p represents the players’ actual

beliefs then, in equilibrium, every player i chooses an action ai = ω such that piω > 0. This

is the players’ best option, given the information conveyed through p. One can easily verify
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it is indeed an equilibrium that yields an expected payoff of −1 for every player. Any other

profile of beliefs would either yield a state with zero-probability according to p thus generating

a strictly low payoff, or allow for the player to choose an action that secures an expected payoff

above −1 (thus reducing the payoffs of all others).

We use this single-stage game G(p) to construct a two-stage game which enables us to cross-

validate the true signal and joint posterior that the players receive. The game is specifically

defined given some strategy τ2 of Oracle 2, to check whether Oracle 1 can indeed mimic the

feasible posteriors of τ2.

For this purpose, let us define the sets of feasible signals and posteriors. Formally, for every

strategy τ , let Sτ = {s ∈ S : ∃ω ∈ Ω : τ(s|w) > 0} be the set of feasible signals, and let

Post(τ) denote the set of feasible posteriors profiles,

Post(τ) =

{
p ∈ (∆(Ω))n : ∃(ω, s) s.t. τ(s|ω) > 0 and p = (µi

τ |ω,s)i∈N

}
.

Note that for every (τ, ω, s), where τ(s|ω) > 0, there exists a unique posterior p ∈ (∆(Ω))n

where p = (µi
τ |ω,s)i∈N ∈ Post(τ), so the sets are well-defined. Let µτ ∈ ∆(∆(Ω)n) be the

distribution over posteriors profiles given a strategy τ .

The two-stage game is defined as follows. First, fix a strategy τ2 of Oracle 2 and consider

some signaling function τ . Assume that ω and s0 are realized according to µ and τ , respectively.

Thus, every player i maintains a posterior µi
τ |ω,s0 ∈ ∆(Ω). Next, every player i privately

announces the perceived signal si ∈ S and a posterior pi ∈ ∆(Ω) from the set of the player’s

feasible posteriors given the (previously fixed) signaling function τ2, private information Πi and

the stated signal si. Let s = (s1, s2, . . . , sn) be the profile of declared signals and denote by

p = (pi)i∈N the declared posteriors of all players. If s and p are not feasible profiles according

to the information induced by every Πi and τ2 (including a mismatch between signals so that

si ̸= sj for any two players i and j), then all players receive −M for some M ≫ 1. However,

if s1 = s2 = · · · = sn ∈ Sτ2 and p = (µi
τ2|ω,s1)i∈N ∈ Post(τ2), then all players proceed to the

second stage in which they play G(p). The two-stage game Gτ2 is illustrated in Figure 17.

This two-stage game Gτ2 is constructed such that players have to match their declared
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Fix τ2

ω and s0 are realized
according to

µ and some τ , respectively

Every player privately
announces the perceived
signal si and posterior pi

If si = sj ∈ Sτ2 ∀i, j,
and

p = (µi
τ2|ω,s1)i∈N ∈ Post(τ2)

Otherwise

Play G(p)
Every player receives

−M ≪ −1

Figure 17: The two-stage game Gτ2 , under any signaling strategy τ .

signals and posteriors between themselves because every mismatch leads to a very low expected

payoff. Moreover, for the same reason, the players must also ensure that the declared signals

and subsequent posteriors match a feasible profile (s, p) given their private information and

signaling function τ2.

The following claim analyzes the two-stage game Gτ2 given that the signaling function τ is

either τ2 or τ1, and assuming that the set Post(τ1) is not a subset of Post(τ2), i.e., assuming that

Post(τ1) ⊈ Post(τ2). It proves that under τ2, players can achieve a strictly higher aggregate

expected payoff compared to what they can achieve in equilibrium under τ1.

Lemma 1. Consider the two-stage game Gτ2. If τ2 is the signaling function, then there exists

an equilibrium so that the aggregate expected payoff is −n. However, given τ1 and assuming

that Post(τ1) ⊈ Post(τ2), then the aggregate expected payoff in equilibrium is strictly below −n.

34



An immediate conclusion from Lemma 1 is Proposition 3, which establishes a condition for

the existence of a strategy τ2 such that NED(G(τ2)) ̸= NED(G(τ1)) for every τ1. Proposition

3 states that, given a strategy τ2 and for every τ1 such that Post(τ1) ⊈ Post(τ2), there exists

a game in which Oracle 1 cannot dominate Oracle 2 due to its inability to match the set of

equilibria induced by the latter. The proof is straightforward, given the construction of Gτ2

and Lemma 1, and is therefore omitted. Yet, as in the proof of Theorem 1, we emphasize that

the deduction follows from the fact that once the expected payoffs in equilibrium do not align

between G(τ1) and G(τ2), then the equilibrium distributions over profiles of actions and states

cannot match.

Proposition 3. Fix τ2 and consider the game Gτ2. For every τ1 satisfying Post(τ1) ⊈ Post(τ2),

the maximal aggregate expected equilibrium payoff in Gτ2(τ2) is strictly greater than in G′
τ2(τ1),

which also implies that NED(Gτ2(τ2)) ̸= NED(Gτ2(τ1)).

In other words, given the game Gτ2 , a necessary condition for Oracle 1 to dominate Oracle 2 is

that, for every strategy τ2, there exists a strategy τ1, such that Post(τ1) ⊆ Post(τ2). Henceforth,

we relate to this as the inclusion condition.

The next proposition proves the reverse inclusion condition, such that a necessary condition

for Oracle 1 to dominate Oracle 2 is that for every strategy τ2, there exists a strategy τ1, such

that Post(τ2) ⊆ Post(τ1). This builds on a different game which exploits the Kullback-Leibler

divergence (KLD) to elicit a unilateral and truthful revelation of individual posteriors.

Proposition 4. Fix τ2. There exists a game G′
τ2

such that for every τ1 satisfying Post(τ2) ⊈

Post(τ1), it follows that NED(Gτ2(τ2)) ̸= NED(Gτ2(τ1)).

The combination of Propositions 3 and 4 provides a key insight into the dominance of one

oracle over another: the dominant oracle can match the set of posterior beliefs induced by the

other oracle. To formalize this, we define a combined game that integrates the game of beliefs

with the KLD-based game. The following Theorem 3 establishes this result.

Theorem 3. If F1 ⪰NE F2, then for every τ2, there exists τ1, such that Post(τ1) = Post(τ2).

The intuition for this result follows from the previous propositions such that the players

need to align their signals and posteriors with each other, as well as to truthfully match them
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with the feasible outcomes of τ2. When players are unable to achieve a truthful alignment, they

encounter the issue of mismatched beliefs and misaligned incentives while playing the sub-games

Gτ2 and G′
τ2
. Notice that one can reach the result of Theorem 3 even when using the weaker

(previously mentioned) dominance condition which states that Oracle 1 dominates Oracle 2 if

and only if for every τ2 and game G, it follows that NED(G(τ2)) ⊆
⋃

τ1
NED(G(τ1)). Yet, the

general question of whether matching the set of posteriors is not only a necessary condition for

dominance, but also a sufficient one, is left for future research.

Remark 4. Recall the weaker dominance notion in the inclusive sense (see Subsection 3.2).

The proof of Theorem 3 also demonstrates that if F1 dominates F2 in the inclusive sense, then

the conclusion of this theorem holds. Specifically, there exists τ1 such that Post(τ1) = Post(τ2).

Beyond Theorem 3, the result given in Proposition 3 also raises an immediate question

about the implications of the inclusion condition on the signaling functions τ1 and τ2. Namely,

how does the inclusion condition translate to the oracles’ strategies, which in turn reflect on

the oracles’ partitions? We provide an analysis of this condition in Lemma 2 below, focusing

on a specific binary signaling function τ2. The lemma shows that the distribution of each signal

of τ1 is proportional to the distribution of some signal of τ2.

Formally, fix two distinct signals {s1, s2} and assume that the partition F2 = {A1, A2, . . . , Am}

has m elements, as noted. Let p1, p2, . . . , pm be m distinct probabilities such that the ratio of

every two distinct numbers from the set A = {pj, 1− pj : j = 1, 2, . . . ,m} is distinct. 13 Define

the signaling function τ2 such that

τ2(s1|Aj) = 1− τ2(s2|Aj) = pj, ∀ ≤ j ≤ m. (1)

Given this signaling function and assuming that the state space comprises a unique CKC,

Lemma 2 states that the inclusion condition implies that τ1 is partially proportional to τ2,

restricted to a subset of feasible signals.

13To achieve this, one can consider m distinct prime numbers r1 < r2 < · · · < rm. Define T0 = Q, and for
every j ≥ 1, let Tj be the extended field of Tj−1 with

√
rj . Take pj ∈ Tj \ Tj−1.
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Lemma 2. Fix τ2 given in Equation (1) and a unique CKC. If Post(τ1) ⊆ Post(τ2), then for

every signal t ∈ Supp(τ1) there exists a signal s ∈ {s1, s2} and a constant c > 0 such that

τ1(t|ω) = cτ2(s|ω) for every ω ∈ Ω.

The result in Lemma 2 pertains to fundamental aspects of Bayesian inference. When the

inclusion condition holds, the probability weights for each signal of τ1 must be proportional

to the weights of some signal of τ2; otherwise, the posteriors would not align. The impact of

this condition is rather extensive, because it implies (at least in some cases) that the partition

of Oracle 1 refines that of Oracle 2. We utilize this result in the characterization of oracle

dominance under a unique CKC in the following Section 5.2.

5.2 A unique CKC

In this section, we characterize oracle dominance under the assumption that Ω consists of a

unique CKC. Specifically, we prove in Theorem 4 that, given a unique CKC, Oracle 1 dominates

Oracle 2 if and only if F1 refines F2. This is also equivalent to the condition that for every

strategy τ2, there exists a strategy τ1 such that the inclusion condition holds (by itself and as an

equality), and it is also equivalent to the condition that the set of distributions over posteriors

profiles are identical (namely, that for every strategy τ2, there exists a strategy τ1 such that

µτ1 = µτ2). While this result has significant merits on its own, it also serves as a foundational

building block for subsequent results that address the partial ordering of oracles in more general

probability spaces.

Theorem 4. Assume that Ω comprises a unique common knowledge component. Then, the

following are equivalent:

• F1 refines F2;

• F1 ⪰NE F2;

• For every τ2, there exists τ1, so that Post(τ1) ⊆ Post(τ2);

• For every τ2, there exists τ1, so that Post(τ1) = Post(τ2);
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• For every τ2, there exists τ1, so that µτ1 = µτ2.

Theorem 4, which builds on Lemma 2, presents an intriguing equivalence between parti-

tion refinements and the inclusion condition. Notably, this result applies to any information

structure with a unique CKC, independent of any specific game. Furthermore, the refinement

condition implies that Oracle 1 can effectively mimic any strategy of Oracle 2, allowing Oracle

1 to support the same sets of distributions on Ω×A induced by Nash equilibria in incomplete-

information games for any given τ2.

5.2.1 More than one CKC: two examples

The refinement condition given in Theorem 4 ensures that Oracle 1 can produce the exact

same strategy as Oracle 2. This however hinges on the existence of a unique CKC. In case

there are several CKCs, Oracle 1 may need to follow a different strategy in order to match the

distribution on posteriors generated by τ2. Namely, τ1 may require more signals than τ2, even

if both oracles have the same (complete) information in every CKC. Let us provide a concrete

example for this.

Example 7. More signals are needed.

Consider a uniformly distributed state space Ω = {ω1, ω2, ω3, ω4}, with two players whose

private information is Π1 = {{ω1, ω2}, {ω3}, {ω4}} and Π2 = {{ω1}, {ω2}, {ω3, ω4}}. The oracles

have the following partitions F1 = {{ω1, ω3}, {ω2}, {ω4}} and F2 = {{ω1}, {ω3}, {ω2, ω4}}. This

information structure is illustrated in Figure 18. Notice that there are two CKCs, {ω1, ω2} and

{ω3, ω4}, and both oracles have complete information in each of these components. That is, F1

refines F2 in every CKC, and vice versa.

Consider the stochastic strategy τ2 given in Figure 19. Notice it is F2-measurable, as

τ2(s|ω2) = τ2(s|ω4) for every signal s, but not F1-measurable.
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Ω Π1 Π2

ω1

ω2

ω3

ω4

(a)

The players’ information

Ω

F1

F2

ω1

ω2

ω3

ω4

(b)

The oracles’ information

Figure 18: On the left, Figure (a) illustrates the information structure of player 1 (blue) and player 2 (red). On
the right, Figure (b) portrays the information structure of Oracle 1 (orange) and Oracle 2 (green).

τ2(s|ω) s1 s2 s3
ω1 0 1/2 1/2
ω2 1/3 2/3 0
ω3 0 2/3 1/3
ω4 1/3 2/3 0

Figure 19: A stochastic F2-measurable strategy of Oracle 2.

The set Post(τ2) of τ2-posteriors is

Post(τ2) =


(ei, ei), ∀ 1 ≤ i ≤ 4,((

3
7
, 4
7
, 0, 0

)
, ej

)
, j = 1, 2,(

ek, (0, 0,
1
2
, 1
2
)
)
, k = 3, 4


,

and we can now try to mimic τ2 using an F1-measurable strategy. First, this requires at least

two signals to distinguish between ω1 and ω2, as well as ω3 and ω4. Second, the posterior((
3
7
, 4
7
, 0, 0

)
, e1

)
requires another signal s so that τ(s|ω1) = α > 0 and τ(s|ω3) = 4

3
α > 0.

However, the F1-measurability requirement implies that τ(s|ω3) = α, and the τ2-posterior(
e3, (0, 0,

1
2
, 1
2
)
)
necessitates that τ(s|ω4) = α as well. These conditions are jointly given in

Table (a) within Figure 20.
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τ1(s|ω) s3 s4 s5
ω1 α β 0
ω2

4
3
α 0 γ

ω3 α β 0
ω4 α 0 γ

(a)

τ1(s|ω) s3 s4 s5 s6
ω1 1/2 1/3 0 1/6
ω2 2/3 0 1/3 0
ω3 1/2 1/3 0 1/6
ω4 1/2 0 1/3 1/6

(b)

Figure 20: A strategy τ1, either with 3 signals as given in Table (a), or with 4 signals as in Table (b).

Evidently, it must be that α, β, γ > 0 in order to mimic τ2, but the second and fourth

rows in Table (a) cannot jointly sum to 1 unless α = 0, which eliminates the possibility of

a well-defined mimicking strategy. Thus, in order to mimic the stated strategy τ2, Oracle 1

requires an additional signal as presented in Table (b), in Figure 20. To conclude, though the

oracles’ partitions refine one another in every CKC, they cannot always produce the exact same

strategy when trying to mimic each other.

Example 8. Dominance need not imply refinement with multiple CKCs

In this example we wish to show that when there are multiple CKCs, Oracle 1 can dominate

Oracle 2 although F1 does not refine F2. To see this, we revisit Example 4. Consider the

following signaling strategy of Oracle 2 given in Figure 21.

τ2(s|ω) s1 s2 s3
ω1 1/4 0 3/4
ω2 1/4 0 3/4
ω3 0 1/2 1/2
ω4 1/4 0 3/4

Figure 21: A stochastic F2-measurable strategy of Oracle 2.

Here, Oracle 2 provides the players with no additional information regarding states ω1 and

ω2. Thus, the posterior over these states remains the original one. On the other hand, given the

states ω3 and ω4, the strategy τ2 reveals the true state with a positive probability and induces

the posterior (0, 0, 2/5, 3/5) with the remaining probability.

While Oracle 2 can assign different probabilities to a signal conditioned on ω2 and ω3, Oracle

1 cannot. However, there is a signaling strategy for Oracle 1 that produces the same distribution

over the posteriors as τ2 does. The following strategy τ1, given in Figure 22, does that.

40



τ1(s|ω) s1 s2 s3
ω1 1/2 0 1/2
ω2 1/2 0 1/2
ω3 1/2 0 1/2
ω4 0 1/4 3/4

Figure 22: A stochastic F1-measurable strategy of Oracle 1.

In this example, it is straightforward to prove that Oracle 1 can mimic every strategy τ2 of

Oracle 2, and we prove this result under more general conditions in Theorem 5 and Proposition

7. Yet, it is clear that F1 is not a refinement of F2 in general, but it is a refinement in every

CKC.

5.3 Multiple CKCs and no loops

We now turn to the general setting in which the players’ information structures induce any

(finite) number of CKCs. Assume that C1, . . . , Cl are mutually exclusive CKCs such that

Ω =
⋃l

j=1Cj. A key aspect of our analysis is the presence of measurability constraints, where

different CKCs are connected by atoms of the oracles’ partitions. To understand the significance

of this, consider a setting where F1 does not contain any element intersecting multiple CKCs.

In this case, Theorem 4 applies separately to each CKC, as Oracle 1 faces no constraints when

attempting to mimic some strategy of Oracle 2.

However, when elements of Oracle 1’s partition intersect different CKCs, the analysis be-

comes more complex, because we must account for measurability constraints when attempting

to use the same strategy τ1 across different CKCs. Such intersections impose constraints on τ1,

preventing us from naively applying Theorem 4.

This issue becomes even more complicated when multiple elements of Oracle 1’s partition

intersect different CKCs, forming what we call an (information) loop.14

Generally, a loop is an ordered sequence of states from different CKCs such that the partition

of an oracle groups together distinct pairs of states from different CKCs, creating a closed path.

The main result of this section, presented in Theorem 5 below, states that in the absence of

14An (information) loop is different from a loop in graph theory. In graph theory, a loop refers to an edge
that connects a vertex to itself.
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such loops, Oracle 1 dominates Oracle 2 if and only if F1 refines F2 in every CKC. The formal

definition of a loop is provided in Definition 3.

Definition 3. An Fi-loop is a sequence (ω1, ω1, ω2, ω2, . . . , ωm, ωm), where m + 1 ≡ 1 and

m ≥ 2, such that

• ωj, ωj ∈ Crj and ωj ̸= ωj for all j = 1, . . . ,m.15

• ωj+1 ∈ Fi(ωj) for all j = 1, . . . ,m.

• Crj ̸= Crj+1
for all j = 1, . . . ,m.

• The sets {ωj, ωj+1} are pairwise disjoint for all j = 1, . . . ,m.

To understand information loops, one can view the CKCs as vertices of a graph. An edge

connects two CKCs if there exist ωj+1 and ωj such that they belong to the same Fi-partition

element (this corresponds to the second requirement). An information loop then parallels an

Eulerian graph, where there is a walk that includes every edge exactly once (the last requirement

in the definition) and ends back at the initial vertex (hence the requirement m + 1 ≡ 1). As

noted at the beginning of Section 5.3, the key aspect of the general analysis is to consider the

case when the oracle partition atoms intersect different CKCs, so we require that Crj ̸= Crj+1

for all j = 1, . . . ,m.

An example of an F1-loop is provided in Figure 23.(a), which depicts a loop consisting of

six states across three CKCs. Note that a loop can intersect the same CKC multiple times, as

long as the sets {ωj, ωj+1} remain pairwise disjoint for each j.

We use the concept of a loop in our first general characterization, presented in Theorem 5.

This theorem builds on the assumption that F1 contains no loops and extends Theorem 4 by

showing that one oracle dominates another if the former’s partition refines that of the latter

in every CKC. It is important to note that the proof is extensive, as it must account for the

measurability constraints of τ1 across all CKCs.

Theorem 5. Assume there is no F1-loop. Then, Oracle 1 dominates Oracle 2 if and only if

F1 refines F2 in every CKC.

15Here Crj refers to the CKC that contains the j-th pair of states (ωj , ωj).
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C1

C2C3

(b)

Figure 23: Figure (a) depicts an F1-loop with three CKCs and six states overall. Figure (b) illustrates how the
F1-loop, presented in (a), is non-balanced with respect to F2. Namely, F2 has two elements A = {ω1, ω2, ω3},
and B = {ω1, ω2, ω3} such that the number of transitions from A to B are 3, while the reverse equals 0.

The proof of Theorem 5 builds on the concept of a sub-strategy. A sub-strategy is a signaling

function without the requirement that the probabilities sum to 1. This relaxation allows us

to study functions that partially mimic a strategy τ2, meaning each posterior is drawn from

Post(τ2) and is induced with a probability that does not exceed the probability with which

τ2 induces it. We show that the set of sub-strategies is compact, allowing us to consider an

optimal sub-strategy for mimicking τ2. The proof then proceeds by contradiction: if the optimal

sub-strategy is not a complete strategy, we can extend it by constructing an additional sub-

strategy to complement the optimal one for posteriors that are not fully supported (relative to

the probabilities induced by τ2). This part is rather extensive as it requires some graph theory

and several supporting claims given in the proof in the appendix.

5.4 Information loops

Previous sections have examined the problem of oracle dominance in the absence of loops,

considering either a unique CKC or multiple CKCs without loops. However, in order to confront

the general question of dominance in the presence of information loops, we need to have a clear

understanding of their properties and implications.

Specifically, when an F1-loop exists, it may create challenges for Oracle 1 in mimicking

Oracle 2, because loops introduce measurability constraints across CKCs. Although Oracle 1

can mimic Oracle 2 within each CKC individually, it may be impossible to do so simultaneously
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across CKCs if the required combined strategy is not measurable with respect to F1. This

suggests that any F1-loop must satisfy certain conditions to ensure that such a strategy is

indeed F1-measurable. The first condition that we study, which turns out to be a necessary

condition for dominance, is generally referred to as F2-balanced.

The idea starts with an F1-loop. We examine all states in this loop and determine how they

can be covered by two F2-measurable sets. In other words, the loop is divided into two disjoint

sets, each contained in an F2-measurable set, denoted A and B. Next, we count the number

of transitions along the loop from A to B, where the entry point into one CKC is through a

state in A and the exit is through a state in B. We do the same for transitions from B to A.

An F1-loop is called F2-balanced if the number of transitions between A and B is equal in both

directions. The formal definition follows.

Definition 4. An Fi-loop (ω1, ω1, ω2, ω2, . . . , ωm, ωm) is F−i-balanced if for every F−i-measurable

partition of the loop’s states into two disjoint sets {A,B} such that ∪j{ωj, ωj} ⊆ A∪B, it fol-

lows that:

#(A → B) := |{j;ωj ∈ A and ωj ∈ B}| = {j;ωj ∈ B and ωj ∈ A}| =: #(B → A). (2)

Note that an F1-loop (ω1, ω1, ω2, ω2, . . . , ωm, ωm), where ωj ∈ F2(ωj) for all j = 1, . . . ,m,

is F2-balanced. Figure 23.(b) examines the F1-loop from Figure 23.(a). The sets A and B are

F2-measurable, restricted to the six states under consideration. The partition into A and B

renders the loop non-F2-balanced, as #(A → B) = 3, while #(B → A) = 0.

Why are balanced loops crucial? The intuition follows from Lemma 2, which must hold

in any CKC, but presents a challenge when a loop is non-balanced. Consider, for example, a

non-balanced loop as depicted in Figure 23, and assume that τ2(s|ω) = 1
2
− 1

4
1{ω∈A} for some

signal s ∈ S. This imposes a specific 1 : 2 ratio between any two states described in each CKC,

so that Πi
τ2(s|ωi)
τ2(s|ωi)

= 1
8
. However, since ωi and ωi+1 belong to the same F1 partition element, the

measurability constraints on Oracle 1 along the loop require that τ1(s|ωi) = τ1(s|ωi+1), hence

Πi
τ1(s|ωi)
τ1(s|ωi)

= 1 for any s in the support of all states. In other words, Oracle 1 cannot match the

ratio dictated by τ2, therefore Lemma 2 does not hold in at least one CKC.
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If the loop were balanced—say, with A = {ω1, ω2} and B = {ω1, ω2, ω3, ω3}—then the same

strategy τ2 would yield Πi
τ2(s|ωi)
τ2(s|ωi)

= 1, as required. In general, when all loops are balanced,

this discrepancy is eliminated for any two such sets A and B. The notion of balanced loops is

closely related to the following notion of covered loops, which implies that an F1-loop can be

decomposed to loops of F2.

Definition 5. An Fi-loop (ω1, ω1, ω2, ω2, . . . , ωm, ωm) is F−i-covered if

• The set {1, ...,m} is partitioned to disjoint sets of indices, J, I1, ..., Ir, i.e., {1, ...,m} =

J ∪ (∪r
t=1It).

• For each t = 1, ..., r,
(
(ωj, ωj)

)
j∈It

is an F−i-loop, also referred to as a sub-loop.16

• J = {j;ωj ∈ F−i(ωj)}.

The cover is order-preserving if every F−i-loop
(
(ωj, ωj)

)
j∈It

in the cover follows the same

ordering of pairs as the Fi-loop.

In simple terms, the definition states that, given an F1-loop (ω1, ω1, ω2, ω2, . . . , ωm, ωm),

we can partition its states to several F2-loops and a set of states where ωj ∈ F2(ωj). Figure

24 (a) depicts an F1-loop consisting of ((ωj, ωj))j=1,...,4, which is covered by two F2-loops:

(ω1, ω1, ω3, ω3) and (ω2, ω2, ω4, ω4). In this case, the set J (defined in Definition 5) is empty.

Figure 24 (b) depicts another case in which the F1-loop is covered by F2-loops, but J = {2, 4}.

Note that the sub-loops in Figure 24 (a) are order-preserving, whereas those in Figure 24 (b)

are not.

The following Proposition 5 proves that an F1-loop is F2-balanced if and only if it is F2-

covered. This proposition assists with the proof of Theorem 6 below, which provides a necessary

condition for dominance.

Proposition 5. Let (ω1, ω1, ω2, ω2, . . . , ωm, ωm) be an F1-loop. The following statements are

equivalent:

16The order of the pairs (ωj , ωj) in the F−i-loop does not have to coincide with their order under the Fi-loop.
For instance, an F1-loop (ω1, ω1, ω2, ω2, ω3, ω3) might be covered by the following F2-loop (ω1, ω1, ω3, ω3, ω2, ω2).
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F2(ω2)F2(ω4)

(a) (b)

Figure 24: Two states connected by a colored line are in the same information set of F2. In (a), the sub-loops
are order-preserving, i.e., following the ordering of pairs in the original F1-loop, whereas those in (b) are not.

i. The loop is F2-balanced;

ii. The loop is F2-covered;

iii. For every F2-measurable function f :
{
ω1, ω1, ω2, ω2, . . . , ωm, ωm

}
→ (0,∞),

m∏
i=1

f(ωi)

f(ωi)
= 1.

The next two properties that we study are irreducible and informative loops. Starting with

the former, an Fi-loop is irreducible if it does not have a sub-loop, namely, there exists no

‘smaller’ Fi-loop that comprises a strictly smaller set of states taken solely from the original

loop. Our analysis would use irreducible loops as building blocks to decompose and compare

loops generated by the oracles’ partitions.

Definition 6. Let Li = (ω1, ω1, ω2, ω2, . . . , ωm, ωm) be an Fi-loop. We say that the loop is

irreducible if there exists no strict subset of the set {ωj, ωj : j = 1, . . . ,m} that forms an

Fi-loop.

We use the definition of an irreducible loop in the context of covers as well, stating that a

cover is irreducible if every loop in the cover is irreducible. Furthermore, the idea of irreducible
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loops is closely related to the concept of covers, and specifically to the set J = {j;ωj ∈ F−i(ωj)}

given in Definition 5 above. Specifically, if there exists an Fi-loop with a pair of states (ωj, ωj)

such that ωj ∈ Fi(ωj), then it cannot be irreducible unless it comprises only 4 states.17 We

typically refer to such cases where ωj ∈ Fi(ωj) as non-informative because Oracle i cannot

distinguish between the two states. This condition is essentially equivalent to every F1-loop

being F2-balanced at 0, meaning that for any choice of the specified F2-measurable sets A and

B, the number of transitions between these sets is zero. The following Definition 7 captures

the idea of informative loops, which would later be used in Theorem 7 as a sufficient condition

for dominance.

Definition 7. An Fi-loop (ω1, ω1, ω2, ω2, . . . , ωm, ωm) is Fk-non-informative if Fk(ωj) = Fk(ωj)

for every j. The loop is Fk-fully-informative if Fk(ωj) ̸= Fk(ωj) for every j.

To understand the motivation behind this definition, consider any F1-loop denoted by

(ω1, ω1, ω2, ω2, . . . , ωm, ωm). If this loop is F2-non-informative, it suggests that the ratios τ2(s|ωi)
τ2(s|ωi)

equals 1 for every signal s supported on these states. In simple terms, conditional on any

{ωi, ωi}, Oracle 2 does not provide any additional information, so the constraints that an F1-

loop imposes on Oracle 1 in every CKC (i.e., that the product of probability ratios along the

loop equals 1) are met by the measurability requirements of F2.

The following proposition summarizes key properties of informative and irreducible loops. It

states that an irreducible loop intersects every CKC at most once and must be fully-informative

(unless it has only 4 states). In addition, the proposition shows that an informative loop has a

fully-informative sub-loop, as well.

Proposition 6. Consider an Fi-loop Li.

• If Li intersects the same CKC more than once, then it is not irreducible.

• If Li is irreducible and consists of at least 6 states, then it is Fi-fully-informative.

• If Li is Fi-informative, then it has an Fi-fully-informative sub-loop.

• If Li is Fi-fully-informative, then it can be decomposed to irreducible Fi-loops.

17In general, the smallest possible loop has at least 4 states, so any such loop is, by definition, irreducible.
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• If Li is not irreducible, then either it intersects the same CKC more than once, or it has

at least 4 states in the same partition element of Fi.

We use this proposition in the following subsection to provide necessary and sufficient con-

dition for the dominance of one oracle over another.

5.5 Necessary and Sufficient conditions for dominance

In the following section, we address the general case where F1 has loops, which imposes con-

straints on Oracle 1 across CKCs. Due to the complexity of this problem, we divide our analysis

into two parts: a necessary condition for dominance presented in Theorem 6, and a sufficient

condition given in Theorem 7. These theorems depend strongly on the properties of information

loops, and specifically on the notions of covers, irreducibility and non-informativeness.

Starting with the necessary conditions, the following theorem, which builds on Propositions

5 and 6, states that if Oracle 1 dominates Oracle 2, then besides the refinement condition in

every CKC, already established in Theorem 5, it must be that every F1-loop is covered by loops

of F2. In addition, it states that every irreducible F2-loop that cover an irreducible F1-loop is

order-preserving, essentially stating that the two loops coincide.

Theorem 6. If Oracle 1 dominates Oracle 2, then:

• F1 refines F2 in every CKC;

• Any F1-loop has a cover by F2-loops; and

• Every irreducible F2-loop that covers an irreducible F1-loop is order-preserving.

The proof of the first part is immediate, as it follows directly from Theorem 4. The proof

of the second part relies on Proposition 5 by assuming that an F1-loop is not F2-balanced,

and constructing a strategy τ2 that Oracle 1 cannot mimic without violating measurability

constraints. The last part relies on Proposition 6, as well as Lemma 2, by depicting a two-

signal strategy τ2 that one cannot mimic without following the same order of pairs throughout

the F2-loop.
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Next, we use the understanding regarding covered and balanced loops to present a sufficient

condition for dominance, which indirectly requires that any loop is balanced at 0—meaning

that there are no transitions between sets A and B. This leads to the following Theorem 7,

which uses the non-informative notion for dominance.

Theorem 7. If F1 refines F2 in every CKC and every F1-loop is F2-non-informative, then

Oracle 1 dominates Oracle 2.

Though we do not yet provide a full characterization, it becomes rather clear that the

requirement that every F1-loop is F2-balanced should be the main focus, as it is a necessary

condition, as well as a sufficient one when the balance is set to zero. In the following section

we show that the balance condition is both necessary and sufficient for the case of two CKCs.

5.6 Toward a general characterization: two CKCs

In this section, we assume there are only two CKCs. This assumption simplifies the analysis, as

the case of two CKCs can be resolved using our prior results, allowing us to examine all possible

loops directly. Formally, Proposition 7 states that, given two CKCs, the necessary condition of

an F2-balanced loop from Theorem 6 is also a sufficient condition.

To build intuition, consider the scenario with two CKCs depicted in Figure 25, featuring

an F1-loop (ω1, ω1, ω2, ω2) across four states. Fix some τ2 and assume the loop is F2-balanced.

There are then only two possibilities: either the loop is F2-non-informative, as shown in cases

(a) and (b) in Figure 25, or it is also an F2-loop, illustrated in case (c) in Figure 25. The first

possibility was covered in Theorem 7, while the second allows Oracle 1 to meet the constraints

imposed by the F1-loop when attempting to mimic τ2.

Proposition 7. Assume there are only two CKCs. Then, Oracle 1 dominates Oracle 2 if and

only if F1 refines F2 in every CKC and any F1-loop is F2-balanced.
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Figure 25: Two CKCs with an F1-loop described by (ω1, ω1, ω2, ω2). Graph (a) and (b) depict two F2-balanced
loops, that are also F2-non-informative, and (c) describes an F2-loop. Any other structure of F2 yields a non-
balanced loop.

6 Equivalent oracles

In this section we tackle a parallel question to dominance, which is the problem of oracles’

equivalence. Specifically, we characterize necessary and sufficient conditions such that both

oracles dominate one another simultaneously, as formally given in the following definition:

Definition 8. F1 is equivalent to F2, denoted F1 ∼ F2, if the two oracles dominate one another,

that is, if Fi ⪰NE F−i for every i = 1, 2.

Based on the results for the case that loops do not exist and the case of two CKCs, equiv-

alence between oracles obviously requires two-sided refinement within every CKC (i.e., equiva-

lence), and that every Fi-loop is F−i-balanced for every Oracle i. This, however, is insufficient

and equivalence also requires that every irreducible Fi-loop with at least 6 states is also an

irreducible F−i-loop. This result is given in the following Theorem 8.

Theorem 8. F1 is equivalent to F2 if and only if for every Oracle i, the partition Fi refines

F−i in every CKC, any Fi-loop has a cover of F−i-loops, and every irreducible Fi-loop with at

least 6 states is an irreducible F−i-loop.

The equivalence condition concerning irreducible loops is based on the ability of both oracles

to follow similar measurability constraints when signaling to players in every CKC. That is, if

one oracle is constrained by an information loop, then we require the other to follow suit. Yet,

this still raises the question of why do we need to focus on irreducible loops? To understand
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this, consider a single partition element of Fi that intersects at least two CKCs where each

intersection contains at least two states. This evidently generates a non-informative loop,

because all pairs are non-informative. But as long as the other oracle cannot distinguish between

the two states in each pair, the ability to separate different pairs in different CKCs is not needed,

as each pair is common knowledge among the players themselves within every CKC.

The proof of Theorem 8 also builds on an intermediate irreducibility notion that we refer

to as type-2 irreducible loop. More formally, an Fi-loop is type-2 irreducible if it does not have

four states from the same partition element of Fi. This notion refines that of fully-informative

loops (as every type-2 irreducible loop is fully-informative), but also weakens that of irreducible

loops, because a type-2 irreducible loop can intersect the same CKC multiple times, and so be

decomposed to sub-loops.

The notion of type-2 irreducible loops is crucial for our analysis and results, but also in a

more general manner. We use type-2 irreducible loops to generate the basic elements, building

blocks, upon which two oracles must match one another (in terms of their information). These

building blocks are referred to as clusters and they are constructed as follows. First, we take

the set of type-2 irreducible loops. Then, we consider such loops that intersect the same CKC

and consider them as connected. Next, we take the transitive-closure of this relation, which

yield disjoint sets of connected type-2 irreducible loops. Finally, we take every such set (of

connected loops) and consider all the CKCs that it intersects - this is a cluster. We prove

that the oracles’ partitions match one another in each of these clusters. That is, the clusters

are the basic structure upon which we derive an equivalence, and later extend it to ”simpler”

connections between clusters that involve only a single partition element of Fi.
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A Appendices

A.1 Proof of Proposition 1

Proof. Necessity. Suppose, by way of contradiction, that there exists a player, say player i,

such that the combined information of F1 and Πi does not refine that of F2 and Πi. Then there

exists an information set of Πi on which F1 does not refine F2. By Blackwell (1953), this implies

that there is a decision problem defined on this information set in which F2 induces a higher

expected payoff than F1.

Now consider a common objective game in which all players except player i are dummies

(i.e., have only one available action). Suppose that payoffs are zero outside this information set

and coincide with player i’s payoff within it. In this game, the highest equilibrium expected

payoff induced by F2 is strictly greater than that induced by F1, contradicting the assumption.

Sufficiency. Assume that for every player i, the combined information of F1 and Πi refines

that of F2 and Πi. Fix a CKC. We first show that in any common objective game, confined to

this CKC, and for every partition F , the highest equilibrium payoff is achieved when F is fully

revealed. In fact, we prove a stronger statement.

Claim 1. Let τ be a signaling function measurable with respect to F . Then the highest equilib-

rium payoff under τ is at least as high as the highest equilibrium payoff under any garbling of

τ ,18 denoted τM .

Suppose that the experiment τ uses signals in the set S, while τM uses signals in the set

T . Let (σi)i∈N be the equilibrium profile that maximizes the players’ payoff, using signals

produced by τM and the private information available to the players. Finally, let M = (mst)

be the garbling matrix, where mst ≥ 0 for every (s, t) ∈ S × T and
∑

t∈T mst = 1 for every

s ∈ S.

Unlike the case with a single decision-maker, the players cannot use the signal generated

by τ in conjunction with M to replicate the signal of τM . The reason is that M is typically

18Here we refer to τ as a Blackwell experiment.
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stochastic, and if the players were to use M privately, they would generate independent signals,

thus lacking coordination.

To prove the assertion, we construct an auxiliary signaling strategy, τ , that players can

follow and generate the same distribution over pairs of state and action profiles as under τM

and (σi)i∈N . The set of signals that τ uses is S × T . Define

τ((s, t)|ω) := mstτ(s|ω).

Note that for any fixed s ∈ S, all signals of the form (s, t) ∈ S × T induce the same

posterior—namely, the posterior that s induces under τ . Define the following strategy profile:

for each player i, let

σi((s, t), πi) := σi(t, πi),

where πi denotes the private information of player i, that is, the element of Πi containing

the realized state. In other words, when player i observes the signal (s, t) and the private

information πi, he plays according to σi(t, πi).The signaling strategy τ serves to coordinate the

players regarding the outcome of the garbling.

The profile (σi)i∈N , when used in conjunction with the signal generated by τ , induces the

same distribution over states and action profiles as the original strategy profile (σi)i∈N under

the signal generated by τM . Consequently, it yields the same expected payoffs.

The profile (σi)i∈N may not constitute an equilibrium, however. In that case, a sequence of

pure-strategy, payoff-improving deviations by individual players benefits all players and even-

tually (after finitely many such deviations) leads to an equilibrium induced by τ . The resulting

payoff is at least as high as the one generated by τM and the profile (σi)i∈N .

Since, for a fixed s ∈ S, all signals of the form (s, t) induce the same posterior, we can

assume that for every player i and private information πi, the actions σi((s, t), πi) are identical

across all t ∈ T . It follows that the strategies σi can be equivalently defined on the signal set

S associated with τ .

We conclude that there exists an equilibrium under τ that yields a payoff at least as high

as that generated by the profile (σi)i∈N . This completes the proof of Claim 1.
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Observe that any F -measurable signaling function is a garble of the full revelation of F .

Thus, the highest equilibrium payoff induced by Fi, i = 1, 2 is when it is fully revealed. Finally,

since for every player i, the join of F1 and Πi refines the join of F2 and Πi, any equilibrium

strategy that is measurable with respect to the latter is also measurable with respect to the for-

mer.19 If these strategies do not constitute an equilibrium under F1, then a process of sequential

improvement—where players unilaterally deviate one at a time—leads to an equilibrium that

yields a higher payoff. This concludes the proof.

A.2 Proof of Theorem 1

Proof. One derivation is straightforward. Assume that F1 ⪰(µi)i F2. For every τ2, take τ1 such

that Πi ∨ τ1 = Πi ∨ τ2 for every player i. Thus, we get NED(G(τ1)) = NED(G(τ2)) for every

game G. This holds for every strategy τ2, so F1 ⪰NE F2 as needed.

To establish the converse derivation of the theorem, we assume that Oracle 1 is not individu-

ally more informative than Oracle 2, and prove that Oracle 1 does not dominate Oracle 2. Fix a

strategy τ2, so that for every τ1, there exists a player i such that Πi∨τ1 ̸= Πi∨τ2. Consider such

τ1, and with no loss of generality, assume that Π1∨τ1 ̸= Π1∨τ2. Denote Π1∨τ2 = {B1, . . . , Bk}

where Bj = {ωj
1, . . . , ω

j
|Bj |} ⊆ Ω for every 1 ≤ j ≤ k.

Consider the following decision problem. Define PBj
to be the set of all permutations of Bj,

so that every element p ∈ PBj
is a function p : Bj → {1, 2, . . . , |Bj|} where p(ωj

l ) is the location

of ωj
l according to that permutation. Let A1 =

⋃
j PBj

be the action set of player 1, so that

player 1 chooses a permutation p over a partial set of Ω. Define the following utility function

u1(a, ω) = u1(p, ω
j
l ) =


p(ωj

l )

µ(ωj
l |Bj)|Bj |

, if p ∈ PBj
,

− 210|Ω|

minω µ(ω)
, if p /∈ PBj

,

where µ(ωj
l |Bj) is the probability of ωj

l conditional on Bj. In simple terms, player i needs to

match his action, i.e., a permutation, to the realized state ωj
l . If the action of player 1 is not

19We cannot reuse Claim 1 here because there is no common garbling for all players: each has its own garbling
matrix.
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a permutation on the states of the realized element of the partition (generated by his private

information and the information that Oracle 2 conveys), he gets an extremely low negative

payoff. However, in case the action of player 1 is a permutation on the relevant block, he

receives a positive payoff based on the ordinal location of the realized state according to the

chosen permutation.

Let us compare the expected payoffs of player 1 given the additional information conveyed

separately by the two oracles. Given the partition Π1 ∨ τ2 and after ω is realized, player 1 is

informed of the relevant block Bj of the partition such that ω ∈ Bj. Thus, for every p ∈ PBj
,

E[u1(p, ω)|Bj] =
∑

ωj
l ∈Bj

µ(ωj
l |Bj)u1(p, ω

j
l ) =

∑
ωj
l ∈Bj

µ(ωj
l |Bj)

p(ωj
l )

µ(ωj
l |Bj)|Bj|

=
∑

ωj
l ∈Bj

p(ωj
l )

|Bj|
=

|Bj|+ 1

2
.

Note that the expected payoff is independent of the chosen permutation p given that p ∈ PBj
.

Hence,

max
p

E[u1(p, ω)|Π1 ∨ τ2] =
k∑

j=1

µ(Bj)
|Bj|+ 1

2
.

Now consider the two possible scenarios given that Π1 ∨ τ1 ̸= Π1 ∨ τ2: either Π1 ∨ τ1 is a

strict refinement of Π1 ∨ τ2, or there exists at least one block of Π1 ∨ τ1 that intersects two

disjoint blocks of Π1 ∨ τ2.

Starting with the former, assume that Π1∨τ1 is a strict refinement of Π1∨τ2, so there exists

a block B∗
j that Π1 ∨ τ1 splits into at least two separate blocks. Without loss of generality,

assume that B1 is such a block, and denote the two disjoint sub-blocks by B1,1 and B1,2, so

that B1 = B1,1 ∪ B1,2. Assume that for every Bj ̸= B1, player 1 follows the same strategy as

with Π1 ∨ τ2 so that we can focus on the difference in expected payoffs given B1. Evidently,

E[u1(p, ω)|B1,1] =
∑

ω1
l ∈B1,1

µ(ω1
l |B1,1)u1(p, ω

1
l ) =

∑
ω1
l ∈B1,1

µ(ω1
l |B1,1)

p(ω1
l )

µ(ω1
l |B1)|B1|

=
∑

ω1
l ∈B1,1

µ(ω1
l |B1)

µ(B1)

µ(B1,1)
· p(ω1

l )

µ(ω1
l |B1)|B1|

=
µ(B1)

µ(B1,1)|B1|
∑

ω1
l ∈B1,1

p(ω1
l ).
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Note that player 1 can choose a permutation on B1 which maximizes the sum of all states in

B1,1, i.e.,

max
p

∑
ω1
l ∈B1,1

p(ω1
l ) = |B1|+ |B1| − 1 + · · ·+ |B1| − |B1,1|+ 1 > |B1,1|

|B1|+ 1

2
.

Thus,

max
p∈PB1

E[u1(p, ω)|B1,1] >
µ(B1)

µ(B1,1)|B1|
|B1,1|

|B1|+ 1

2
,

and a similar computation holds for B1,2. Therefore,

max
p

E[u1(p, ω)|Π1 ∨ τ1] >
k∑

j=2

µ(Bj)
|Bj|+ 1

2
+ µ(B1,1)

µ(B1)

µ(B1,1)|B1|
|B1,1|

|B1|+ 1

2

+ µ(B1,2)
µ(B1)

µ(B1,2)|B1|
|B1,2|

|B1|+ 1

2

=
k∑

j=2

µ(Bj)
|Bj|+ 1

2
+

[
|B1,1|
|B1|

+
|B1,2|
|B1|

]
µ(B1)

|B1|+ 1

2

=
k∑

j=1

µ(Bj)
|Bj|+ 1

2
= max

p
E[u1(p, ω)|Π1 ∨ τ2],

and player 1 can guarantee a strictly higher expected payoff using the information conveyed

through Oracle 1 than through Oracle 2.

Next, consider the other possibility that Π1 ∨ τ1 is not a refinement of Π1 ∨ τ2. This implies

that there exists at least one block of Π1∨τ1 that intersects two disjoint blocks of Π1∨τ1. Denote

this block by B∗. For every state ωj
l and every permutation p ∈ PBj

, note that p(ωj
l ) ≤ |Bj|,

so u1(p, ω
j
l ) ≤ 1

µ(ωj
l |Bj)

. Hence, in the optimal case in which player 1 is completely informed of

the realized state, his payoff cannot exceed |Ω|. However, in case player 1 wrongfully chooses a

permutation that does not match the realized block in Π1∨ τ2, his payoff is given by − 210|Ω|

minω µ(ω)
.
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Thus,

E[u1(p, ω)|B∗] =
∑
ω∈B∗

µ(ω|B∗)u1(p, ω)

<
∑
ω∈B∗

µ(ω|B∗)
1

µ(ω|B∗)
+ min

ω∈B∗
µ(ω|B∗)

[
− 210|Ω|

minω µ(ω)

]
< |B∗| − 210|Ω|

µ(B∗)
.

This suggests that the expected payoff of player 1 given Π1 ∨ τ1 is bounded from above by

max
p

E[u1(p, ω)|Π1 ∨ τ1] < |Ω| − 210|Ω| < 0,

which is strictly below the expected payoff given the information transmitted through Oracle

2.

To conclude, for every player i, we can define a decision problem such that whenever Πi ∨

τ1 ̸= Πi ∨ τ2, it follows that the expected payoff of player i given τ2 differs from the player’s

expected payoff given τ1. Hence, there exists τ2 which yields a unique profile of expected payoffs

in equilibrium that cannot be matched by any τ1, thus for every τ1, we get NED(G(τ2)) ̸=

NED(G(τ1)), and this concludes the proof.

A.3 Proof of Theorem 2

Proof. Fix a unique CKC. One direction is trivial, so assume that Fi is IMI than F−i for every

i = 1, 2, and let us prove that F1 = F2. Assume, to the contrary, that F1 ̸= F2. W.l.o.g, there

exist ω1 ̸= ω2, such that F1(ω1) = F1(ω2) whereas F2(ω1) ̸= F2(ω2).

Consider the partition F ′
2 = {F2(ω), (F2(ω))

c}. By assumption, there exists a partition

F ′
1 such that Πi ∨ F ′

1 = Πi ∨ F ′
2, for every player i. Denote A = F ′

1(ω1) ∩ F2(ω1), B =

F ′
1(ω1) ∩ (F2(ω1))

c, C = (F ′
1(ω1))

c ∩ F2(ω1), and D = (F ′
1(ω1))

c ∩ (F2(ω1))
c. See Figure 26.(a).

If there exists a player i such that Πi(ω1) = Πi(ω2), then ω2 ∈ (F ′
1 ∨ Πi)(ω1), while ω2 /∈

(F ′
2 ∨ Πi)(ω2), which contradicts the equation Πi ∨ F ′

1 = Πi ∨ F ′
2. Thus, for every (ω, ω′) ∈

A×B ∪ A×D ∪B × C and for every player i, we conclude that Πi(ω) ̸= Πi(ω
′).
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Illustrations of sub-partitions in the proof of Theorem 2

F2(ω1) (F2(ω1))
c

A B

F ′
1(ω1)

ω1 ω2

D C

(a)

F2(ω1) (F2(ω1))
c

A B

F ′
1(ω1)

ω1 ω2

ω′
2 ω′

1.1

ω3 ω1.l1

ij

kD C

(b)

F1(ω1) (F1(ω1))
c

A′ B′

F ′′
2 (ω1)

ω1

ω′
1.1

ω3

ω1.l1

k

D′ C ′

(c)

Figure 26: Figures (a) and (b) depict the partition F ′
2 and the sub-partition F ′

1 that mimics it. Figure (b) also
illustrates the path between ω1 and ω2, as well as the possible connections between the different sets. Figure
(c) depicts the partitions F ′′

1 and F ′′
2 along with the path from ω1 to ω2.

Because this is a unique CKC, every two states ω and ω′ have a connected path, in the

sense that there exists a finite sequence of states starting with ω and ending with ω′ where

every two adjacent states are in the same information set of some player. Fix such a path from

ω1 to ω2, and denote it by (ω1, ω1.1, ω1.2, . . . , ω1.l, ω3, . . . , ω2) where {ω1.t : 1 ≤ t ≤ l} ∈ C and

ω3 ∈ D. This holds, w.l.o.g., because states in A are directly connected (through a partition

element of some player) only to states in A ∪ C, and the same holds for states in B that

are directly connected only to states in B ∪ D. Note that ω1.t ∈ (F1(ω1))
c for every t and

ω3 ∈ F2(ω1) ∩ (F1(ω1))
c. See Figure 26.(b).

Now consider the partition F ′′
1 = {F1(ω1), (F1(ω1))

c}. By assumption, there exists a par-

tition F ′′
2 such that Πi ∨ F ′′

1 = Πi ∨ F ′′
2 , for every player i. Denote A′ = F1(ω1) ∩ F ′′

2 (ω1),

B′ = (F1(ω1))
c ∩ F ′′

2 (ω1), C
′ = (F1(ω1))

c ∩ (F ′′
2 (ω1))

c, and D′ = F1(ω1) ∩ (F ′′
2 (ω1))

c. See Figure
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26.(c).

Similarly to the previous analysis, states in A′ are directly connected only to states in A′∪C ′,

and states in B′ are directly connected only to states in B′ ∪D′. In addition, note that ω1 ∈

F1(ω1)∩ F2(ω1) ⊆ A′, ω1.t ∈ (F1(ω1))
c ⊆ B′ ∪C ′ for every t, and ω3 ∈ F2(ω1)∩ (F1(ω1))

c ⊆ B′.

If ω1.1 ∈ B′, we can make a direct connection between A′ and B′, which yields a contradiction.

Thus, ω1.1 ∈ C ′, and the sequence (ω1.1, ω1.2, . . . , ω1.l1 , ω3) which starts in C ′ and ends in B′ has

at least one direct connection between B′ and C ′. A contradiction, as well. Thus, for every

ω1 ̸= ω2, we conclude that F1(ω1) = F1(ω2) if and only if F2(ω1) = F2(ω2), and the result

follows.

A.4 Proof of Proposition 2

Proof. For every player i, we can focus our analysis on the function Ri. Assuming that player

i’s belief is qi, we get

max
ai∈Ai

Eqi [Ri(ai, ω|p)] = max
ai∈Ai

[∑
ω∈Ω

qiωRi(ai, ω|p)

]
= max

ai∈Ai

[∑
ω∈Ai

qiω
piai

1{ω=ai}

]
− 2

∑
ω/∈Ai

qiω.

The second term in independent of ai, so player i maximizes only the first one. If pi = qi for

every player i, then

max
ai∈Ai

[∑
ω∈Ai

qiω
piai

1{ω=ai}

]
− 2

∑
ω/∈Ai

qiω = max
ai∈Ai

qiai
piai

− 2
∑
ω/∈Ai

0 = 1,

independently of the chosen action ai ∈ Ai. Therefore,

max
ai∈Ai

Eqi [ui(a, ω|p)] = 1− 2

n− 1

∑
j ̸=i

1 = −1,

as stated.

Moving on to the second part of the proposition, assume that there exists a player i whose

actual belief is qi ̸= pi. The proof is now divided into two parts: either qi is supported on a

subset of Supp(pi), namely Supp(qi) ⊆ Supp(pi), or not.
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Starting with the former, assume that Supp(qi) ⊆ Supp(pi). Evidently,

max
ai∈Ai

Eqi [Ri(ai, ω|p)] = max
ai∈Ai

qiai
piai

> 1.

Denote maxai∈Ai
Eqi [Ri(ai, ω|p)] = 1 + c. Assuming that the beliefs of all other players align

with p, the expected equilibrium payoffs of player i and of every other player j ̸= i are

Eqi [ui(ai, ω|p)] = 1 + c− 2

n− 1
(n− 1) = −1 + c,

Epj [uj(aj, ω|p)] = 1− 2

n− 1
(n− 1 + c) = −1− 2c

n− 1
,

respectively. Thus, the aggregate expected payoff in equilibrium is

(−1 + c) + (n− 1)

[
−1− 2c

n− 1

]
= −n− c < −n,

as stated. Note that we get a similar result for every additional player j whose belief is qj ̸= pj.

Next, assume that that there exists a player i with a belief qi such that Supp(qi) ⊈ Supp(pi).

If Supp(qi) ∩ Supp(pi) = ϕ, then the player’s expected payoff is

Eqi [ui(ai, ω|p)] = −2− 2

n− 1
(n− 1) = −4.

For players other than player i, since 1{ω∈Ai} = 0, it follows that their expected payoff is

Epj [uj(aj, ω|p)] = 1− 2

n− 1
(n− 2).

The aggregate expected payoff over all players is −4 + (n − 1)
[
1− 2

n−1
(n− 2)

]
= −n − 1, as

needed.

If Supp(qi) ∩ Supp(pi) ̸= ϕ, denote q0 =
∑

ω/∈Ai
qiω ∈ (0, 1) and riω = qiω

1−q0
, for every ω ∈ Ai.

Thus,
∑

ω∈Ai
riω = 1, and we get

max
ai∈Ai

∑
ω∈Ai

riω
piai

1{ai=ω} ≥ 1,
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which implies that

d := max
ai∈Ai

∑
ω∈Ai

qiω
piai

1{ai=ω} = max
ai∈Ai

∑
ω∈Ai

[1− q0]r
i
ω

piai
1{ai=ω} ≥ 1− q0.

Thus, the expected payoff of player i, assuming that qj = pj for every other player j ̸= i, is

max
ai∈Ai

Eqi [ui(ai, ω|p)] = max
ai∈Ai

[∑
ω∈Ai

qiω
piai

1{ai=ω}

]
− 2

∑
ω/∈Ai

qiω − 2

n− 1

∑
j ̸=i

1

= max
ai∈Ai

[∑
ω∈Ai

qiω
piai

1{ai=ω}

]
− 2q0 − 2 = d− 2q0 − 2,

and the expected equilibrium payoff of every other player j ̸= i is

Epj [uj(aj, ω|p)] = 1− 2

n− 1
(n− 2 + d),

Aggregating over all players,

∑
j

Epj [uj(aj, ω|p)] = d− 2q0 − 2 + (n− 1)

[
1− 2

n− 1
(n− 2 + d)

]
= −n− q0 + (1− q0 − d)

≤ −n− q0 < −n,

where the two inequalities follow from d ≥ 1 − q0 and q0 > 0, as stated above. Again, we

get a similar result for every additional player j whose belief is Supp(qj) ⊈ Supp(pj), and the

statement holds.

A.5 Proof of Lemma 1

Proof. We start by analyzing the game given that the signaling function is τ2. Consider the

profiles s = (s1, s2, . . . , sn) and p = (pi)i∈N , so that all players declare the true public signal

si = sj for every two players i and j, and pi = µi
τ2|ω,si is the true posterior of every player i.

In the second-stage sub-game, as stated in Proposition 2, every player receives a payoff of −1
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and the aggregate expected payoff in the two-stage game Gτ2 is −n. Let us prove that this is

indeed an equilibrium.

The negative payoff −M ensures that a unilateral deviation to a different signal is sub-

optimal, so we need only to consider the case in which some player i deviates to a posterior

pi ̸= µi
τ2|ω,si . Notice that, given an element in Πi and for every signal si ∈ Sτ2 , there exists

a unique feasible posterior on Πi. Thus, there are only two possible deviations concerning pi:

either the updated profile p is no longer feasible and again all players receive a payoff of −M , or

p is feasible, but pi is supported on a different partition element whose probability is zero given

player i’s actual partition element. Due to the negative expected payoff of −M in the former

case, we need only to consider the latter possibility. If player i declares a zero-probability belief

(relative to the true posterior), then the proof of Proposition 2 shows that the player’s expected

payoff in the second stage is −2. Thus, we conclude that a truthful revelation of all information

comprises an equilibrium, and the aggregate expected payoff given this equilibrium is −n.

Next, consider the signaling function τ1 so that Post(τ1) ⊈ Post(τ2), and fix any equilibrium

profile. Evidently, the players must coordinate on some feasible combination of s and p accord-

ing to τ2, otherwise they all get −M . However, with some positive probability, the declared

posterior pi of some player i mismatches the realized one µi
τ1|ω,si . In that case, Proposition

2 shows that the aggregate expected payoff is strictly below −n. So, the expected aggregate

payoff in the two-stage game Gτ2 , given the stated strategy τ1, is also strictly below −n, as

needed.

A.6 Proof of Proposition 4

Proof. Fix τ2 and let Posti(τ2) be the set of feasible posterior beliefs of player i under τ2. Define

the game G′
τ2 as follows. The set of player i’s actions is Ai = Posti(τ2). His payoff function is

ui(p
i, ω) = limϵ→0+ log(piω + ϵ). For every player, the game is a single-person decision problem

in which the objective of a player is to choose a belief in Posti(τ2) that maximizes his expected

payoff, given his actual belief qi, which may be different from pi.

Claim 1. If the actual belief is qi ∈ Posti(τ2), then the optimal strategy for player i is pi = qi.

Any pi ∈ Posti(τ2) that is different from qi would yield player i a strictly lower payoff.
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To prove this claim, first observe that it is not optimal to choose a pi where Supp(qi) ̸⊂

Supp(pi). Otherwise, there exists ω ∈ Supp(qi)\Supp(pi), such that with a positive probability

qiω, player i would receive a payoff that tends to −∞.

Next, we show that among those pi that share the same support as qi, the unique optimal

choice is pi = qi. To see this, note that

∑
ω∈Supp(qi)

qiω log(p
i
ω) =

∑
ω∈Supp(qi)

qiω log(q
i
ω)−DKL(q

i∥pi),

where DKL(q
i∥pi) is the Kullback-Leibler divergence. Since DKL(q

i∥pi) is uniquely minimized

when pi = qi, it follows that player i’s expected payoff is uniquely maximized when pi = qi.

Finally, we show that it is not optimal to choose pi where Supp(qi) ⊊ Supp(pi). Consider

such a pi. Since
∑

ω∈Supp(qi) p
i
ω < 1, we can allocate the remaining probability mass to states

in Supp(qi) to obtain a probability distribution p̂i where Supp(p̂i) = Supp(qi) and p̂iω > piω for

every ω ∈ Supp(qi). Hence,

∑
ω∈Supp(qi)

qiω log(q
i
ω) ≥

∑
ω∈Supp(qi)

qiω log(p̂
i
ω) >

∑
ω∈Supp(qi)

qiω log(p
i
ω),

where the first inequality follows from the fact that qi is the unique optimal choice among

probability distributions that share the same support, and the second inequality follows from

p̂iω > piω for every ω ∈ Supp(qi). This concludes the claim.

It follows from Claim 1 that under τ2, the set of posterior belief profiles in Post(τ2) are

all chosen with positive probability in the equilibria of the game Gτ2(τ2). On the other

hand, for every strategy τ1 satisfying Post(τ2) ⊈ Post(τ1), there exists a posterior belief

profile p ∈ Post(τ2) \ Post(τ1), that is chosen with zero probability in every equilibrium of

the game Gτ2(τ1). Thus, for every τ1 that satisfies Post(τ1) ⊈ Post(τ2), we conclude that

NED(G′
τ2
(τ2)) ̸= NED(G′

τ2
(τ1)).
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A.7 Proof of Theorem 3

Proof. Fix τ2, and consider the games Gτ2 and G′
τ2
, as defined above, where the sets of actions

for each player in these games are disjoint. Define the game G as the one in which Gτ2 and

G′
τ2

are played with equal probability, i.e., with probability 1/2 each.

If Post(τ1) ̸= Post(τ2), then either there exists a posterior profile p ∈ Post(τ1) \ Post(τ2),

or there exists a posterior profile p ∈ Post(τ2) \ Post(τ1). Following Proposition 3 and 4,

in each of the mentioned sub-games, it follows that NED(G(τ2)) ̸= NED(G(τ1)) where G ∈

{Gτ2 ,G
′
τ2
}. Thus, if no τ1 satisfies Post(τ1) = Post(τ2), there exists a game G and τ2, such that

NED(G(τ2)) ̸= NED(G(τ1)) for every τ1, which contradicts the dominance assumption.

A.8 Proof of Lemma 2

Proof. Assume, to the contrary, there exists a signal t ∈ Supp(τ1) such that for every signal

si ∈ {s1, s2}, there exist two states ω1, ω
∗ ∈ Ω such that

τ1(t|ω1)

τ2(si|ω1)
̸= τ1(t|ω∗)

τ2(si|ω∗)
. (3)

Note that τ2(si|ω) > 0 for every si and ω, so the fractions are well defined. In addition,

it must be that either τ1(t|ω1) > 0 or τ1(t|ω∗) > 0, so assume that τ1(t|ω1) > 0. Because ω1

and ω∗ are in the same CKC, there exists a finite sequence (ω1, ω2, ω3, . . . , ω
∗) such that every

two adjacent states are in the same partition element for some player. Assume, w.l.o.g., that

{ω1, ω2} and {ω2, ω3} are in the same partition elements of players l1 and l2 respectively. Using

the definition of τ2, it follows that in every posterior (µl
τ2|ω,si)l∈N ∈ Post(τ2), the coordinates

relating to Πl(ω) are strictly positive (for every player l and every signal si). Thus, for every

state ω and signal si,

µl1
τ2|ω,si(ω1) > 0 ⇔ µl1

τ2|ω,si(ω2) > 0,

and

µl2
τ2|ω,si(ω2) > 0 ⇔ µl2

τ2|ω,si(ω3) > 0.

Take a posterior (µl
τ1|ω,t)l∈N such that µl1

τ1|ω,t(ω1) > 0. Because Post(τ1) ⊆ Post(τ2), it follows
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that µl1
τ1|ω,t(ω2) > 0, hence τ1(t|ω2) > 0. The fact that τ1(t|ω2) > 0 implies that µl2

τ1|ω2,t
(ω2) > 0,

and so µl2
τ1|ω2,t

(ω3) > 0. We thus conclude that τ1(t|ω3) > 0. Continuing inductively, it follows

that τ1(t|ω) > 0 for every ω ∈ {ω1, ω2, . . . , ω
∗}.

According to the definition of τ2 and using Bayes’ rule, for every signal si and for every

posterior where µl
τ2|ω′′,si

(ω) > 0, which implies that ω ∈ Πl(ω
′′), we know that

µl
τ2|ω′′,si

(ω) =
µl
τ2
(ω′′, si|ω)µ(ω)
µl
τ2
(ω′′, si)

=
τ2(si|ω)µ(ω)

|Πl(ω′′)|µl
τ2
(ω′′, si)

.

Thus, for every ω′ ∈ Πl(ω), we get

µl
τ2|ω′′,si

(ω)

µ(ω)
=

τ2(si|ω)
τ2(si|ω′)

·
µl
τ2|ω′′,si

(ω′)

µ(ω′)
.

Note that τ2(si|ω)
τ2(si|ω′)

= 1 if and only if F2(ω) = F2(ω
′), and otherwise, the ratio τ2(si|ω)

τ2(si|ω′)
is given by

c ∈ {x
y
: x, y ∈ A}. Thus, for every such si where µl

τ2|ω′′,si
(ω) · µl

τ2|ω′′,si
(ω′) > 0, there exists a

unique c ∈ {x
y
: x, y ∈ A} ∪ {1} such that

µl
τ2|ω′′,si

(ω)

µ(ω)
= c ·

µl
τ2|ω′′,si

(ω′)

µ(ω′)
.

In case c = 1, then the last equation holds for every signal si because τ2(si|ω) = τ2(si|ω′) if and

only if ω′ ∈ F2(ω).

By the inclusion criterion, for every posterior (µl
τ1|ω2,t

)l∈N generated by τ1, there exists a

posterior (µl
τ2|ω′′,si

)l∈N generated by τ2, such that the two are identical. We thus conclude that

µl1
τ1|ω2,t

(ω1)

µ(ω1)
=

µl1
τ2|ω′′,si

(ω1)

µ(ω1)
= c1 ·

µl1
τ2|ω′′,si

(ω2)

µ(ω2)
= c1 ·

µl1
τ1|ω2,t

(ω2)

µ(ω2)
,

and
µl2
τ1|ω2,t

(ω2)

µ(ω2)
=

µl2
τ2|ω′′,si

(ω2)

µ(ω2)
= c2 ·

µl2
τ2|ω′′,si

(ω3)

µ(ω3)
= c2 ·

µl2
τ1|ω2,t

(ω3)

µ(ω3)
,
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as well. Using Bayes’ rule, the last two equations are equivalent to

τ2(si|ω1) = c1 · τ2(si|ω2) = c1 · c2 · τ2(si|ω3), (4)

τ1(t|ω1) = c1 · τ1(t|ω2) = c1 · c2 · τ1(t|ω3).

Note that these equations hold for every si in case c1 = c2 = 1, and otherwise hold for a specific

signal, which could be taken as s1 without loss of generality.

One can continue inductively along the sequence (ω1, ω2, ω3, . . . , ω
∗) to get

τ2(si|ω2) = c2 · τ2(si|ω3) = c2 · c3 · τ2(si|ω4), (5)

τ1(t|ω2) = c2 · τ1(t|ω3) = c2 · c3 · τ1(t|ω4),

and the first equality in Equation (5) coincides with the second equality in Equation (4).

Namely, Equations (4) and (5) either hold for every signal si, or hold for the same signal s1.

Repeatedly following the same procedure, we get that

τ2(si|ω1) = c1 · τ2(si|ω2) = · · · = [Πk≥1ck] · τ2(si|ω∗), (6)

τ1(t|ω1) = c1 · τ1(t|ω2) = · · · = [Πk≥1ck] · τ1(t|ω∗). (7)

Dividing Equation (7) by Equation (6), we get τ1(t|ω1)
τ2(si|ω1)

= τ1(t|ω∗)
τ2(si|ω∗) , which contradicts (3), as

needed.

A.9 Proof of Theorem 4

Proof. Proving that the first condition yields the second which, in turn, yields the third, is

immediate. Assume that F1 refines F2. Then, for every τ2, there exists τ1 such that τ1 = τ2.

It thus follows that Oracle 1 dominates Oracle 2. Next, assume that there exists τ2 such that

for every τ1, it follows that Post(τ1) ⊈ Post(τ2). According to Proposition 3, Oracle 1 does not

dominate Oracle 2. Now, let us prove that the third condition yields the first, that is: if F1 does

not refine F2, then there exists τ2 such that for every τ1, it follows that Post(τ1) ⊈ Post(τ2).
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If F1 does not refine F2, there exists ω0 and ω∗, so that F1(ω0) = F1(ω
∗) and F2(ω0) ̸= F2(ω

∗).

Consider the signaling function τ2 defined in (1) and take any strategy τ1. Assume, to the

contrary that Post(τ1) ⊆ Post(τ2). According to Lemma 2, for every signal t ∈ Supp(τ1) there

exists a signal si ∈ Supp(τ2) and a constant c > 0 such that τ1(t|ω) = cτ2(si|ω) for every ω.

In addition, the measurability condition of τ1 imply that τ1(t|ω0) = τ1(t|ω∗) for every signal

t. Thus, τ2(si|ω0) = τ2(si|ω∗) and this contradicts the definition of τ2. This establishes the

equivalence between the first three conditions.

Now, notice that the first (refinement) condition implies the equivalence of distributions

over posteriors profiles (fifth condition), because Oracle 1 can exercise any strategy of Oracle

2. The fifth condition in turn implies the forth condition (so that the set of posterior profiles

match), which implies the third condition, thus concluding the proof.

A.10 Proof of Theorem 5

Proof. One direction is straightforward. Assume, to the contrary, that Oracle 1 dominates

Oracle 2, but F1 does not refine F2 in some CKC. Denote this CKC by C1, and consider the

set of all games where the payoffs of all players are zero in every ω /∈ C1 independently of their

actions. Thus, Oracle 1 dominates Oracle 2 in every game restricted to C1, although F1 does

not refine F2 in C1. This contradicts Theorem 4.

Moving on to the second part, assume to the contrary that F1 refines F2 in every CKC, but

Oracle 1 does not dominate Oracle 2. Therefore, there exists a strategy τ2 such that Oracle 1

cannot produce the same distribution over posteriors as τ2.
20 The proof now splits to 4 steps.

Step 1: Mimicking sub-strategies.

We start by defining the notion of a sub-strategy, that resembles a strategy, but with induced

probabilities that may sum to less than 1. Formally, a partial distribution p̃ is a non-negative

function from a finite subset of S to [0, 1] such that
∑

s∈S p̃(s) ≤ 1. A partial distribution

differs from a distribution as the probabilities need not sum to 1. Let ∆̃(S) be the set of partial

20Observe that the condition that Oracle 1 can generate the same distribution over posterior profiles as Oracle
2 implies that Oracle 1 dominates Oracle 2. To see this, consider any game and any signaling strategy τ . Since
the players’ strategies depend on the profile of posteriors, we can then abstract away from the underlying private
and public information and assume that the players play a Bayesian game with a given probability distribution
over the profiles of posteriors, which can be generated by both Oracles.
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distributions on S, and define a sub-strategy τ : Ω → ∆̃(S) as an F1-measurable function from

Ω to the set of partial distributions on S. That is, τ(s|ω) ≥ 0 and
∑

s τ(s|ω) ≤ 1, for every ω

and s. Evidently, every F1-measurable strategy is a sub-strategy.

For every sub-strategy τ and every p ∈ (∆(Ω))n, let Pτ (p) be the probability that τ yields

the posterior p, i.e.,

Pτ (p) =
∑

(ω,s): τ(s|ω)>0,
and (µi

τ |ω,s
)i∈N=p

µ(ω)τ(s|ω). (8)

Similarly, define Pτ2(p) for every posterior p given the stated strategy τ2. We say that a sub-

strategy τ mimics τ2 if

Pτ (p) ≤ Pτ2(p), for every p ∈ (∆(Ω))n. (9)

Hence, a sub-strategy τ mimics τ2 if, for every posterior p, the probability that τ generates

p does not exceed the probability that τ2 generates it. Note that the null sub-strategy (i.e.,

τ(s|ω) = 0 for every ω and s) also mimics τ2.

Consider any sub-strategy τ that mimics τ2. Because τ2 generates a finite set Post(τ2) of

possible posteriors, there exists a finite number of combinations of posteriors (which does not

exceed 2|Post(τ2)|) that every signal of τ supports. So, if some sub-strategy uses more than

2|Post(τ2)| signals, we can apply the pigeonhole principle to deduce that the additional signals

support similar combinations of posteriors as some other signals. Therefore, for every such

additional signal s, there exists another signal s′ and a constant c > 0 such that τ(s|ω) =

cτ(s′|ω) for every ω, and we can unify the two signals into one. We can thus assume that there

exists a finite set of signals S, such that every mimicking sub-strategy (i.e., that mimics τ2)

uses only signals from S.

Step 2: Optimal sub-strategies.

Let Aτ be the set of sub-strategies that mimic τ2. Note that the set of sub-strategies

supported on S is compact, and the (inequality) mimicking condition, Pτ (p) ≤ Pτ2(p) for every

p ∈ (∆(Ω))n, remains valid when considering a converging sequence of sub-strategies. Thus,

Aτ is also compact.
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Consider the function H(τ) =
∑

p∈Post(τ2) Pτ (p) defined from Aτ to [0, 1]. As a piece-

wise linear function of τ , it is a continuous, so τ 1.0 = argmaxτ∈Aτ
H(τ) is well-defined. If

H(τ 1.0) = 1, then τ 1.0 is an F1-measurable strategy that mimics τ2. This contradicts the

original premise (that Oracle 1 cannot induce the same distribution over posteriors as τ2), so

assume to the contrary that τ 1.0 is a proper sub-strategy and H(τ 1.0) < 1. If that is the case

(i.e., if H(τ 1.0) < 1), there exists a posterior p∗ ∈ Post(τ2) so that Pτ1.0
(p∗) < Pτ2(p

∗).

Step 3: Partially supported and connected posteriors.

For every posterior p ∈ Post(τ2), let Ap = {ω ∈ Ω : pi(ω) > 0 for some player i} be the

set of states on which p is strictly positive, contained in some CKC denoted Cp. We say that a

posterior p ∈ Post(τ2) is partially supported (PS) if Pτ1.0
(p) < Pτ2(p), otherwise we say that p

is fully supported (FS). Let us now prove a few supporting claims related to PS posteriors.

Claim 1: If p is PS, then
∑

s τ 1.0(s|ω) < 1 for every state ω ∈ Ap.

Proof. Fix a posterior p and a state ω0 such that (µi
τ |ω0,s

)i∈N = p for some signal s and τ ∈

{τ 1.0, τ2}. There exists a constant αp,ω0 , independent of s and τ , such that αp,ω0µ(ω0)τ(s|ω0) =∑
ω∈Ap\{ω0} µ(ω)τ(s|ω). This follows from the fact that, in order to induce the posterior p, the

probabilities induced by τ must maintain the same proportions along the different states in Ap,

independently of either the strategy or the signal. Otherwise, the induced posterior would not

match p. Thus, Equation (8) could be re-formulated as follows,

Pτ (p) =
∑

(ω,s):(µi
τ |ω,s

)i∈N=p

µ(ω)τ(s|ω)

=
∑

s:(µi
τ |ω0,s

)i∈N=p

µ(ω0)τ(s|ω0) +
∑

(ω,s):ω∈Ap\{ω0},
and (µi

τ |ω,s
)i∈N=p

µ(ω)τ(s|ω)

= (1 + αp,ω0)µ(ω0)
∑

s:(µi
τ |ω0,s

)i∈N=p

τ(s|ω0),

which translates to ∑
s:(µi

τ |ω0,s
)i∈N=p

τ(s|ω0) =
Pτ (p)

(1 + αp,ω0)µ(ω0)
.
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Summing over all p ∈ Supp(τ2), we get

∑
s

τ(s|ω0) =
1

µ(ω0)

∑
p:(µi

τ |ω0,s
)i∈N=p,

for some s

Pτ (p)

(1 + αp,ω0)
. (10)

Note that the RHS holds for either τ 1.0 or τ2.

Now assume, by contradiction, that p0 is a PS posterior and
∑

s τ 1.0(s|ω0) = 1 for some

state ω0 ∈ Ap0 . Using Equation (10), for both τ2 and τ 1.0, we get

1 =
∑
s

τ2(s|ω0) =
1

µ(ω0)

∑
p:(µi

τ2|ω0,s
)i∈N=p,

for some s

Pτ2(p)

(1 + αp,ω0)

1 =
∑
s

τ 1.0(s|ω0) =
1

µ(ω0)

∑
p:(µi

τ1.0|ω0,s
)i∈N=p,

for some s

Pτ1.0
(p)

(1 + αp,ω0)
,

which implies that

∑
p:(µi

τ2|ω0,s
)i∈N=p,

for some s

Pτ2(p)

(1 + αp,ω0)
=

∑
p:(µi

τ1.0|ω0,s
)i∈N=p,

for some s

Pτ1.0
(p)

(1 + αp,ω0)
<

∑
p:(µi

τ2|ω0,s
)i∈N=p,

for some s

Pτ2(p)

(1 + αp,ω0)
,

where the strict inequality follows from the fact that Pτ1.0
(p) ≤ Pτ2(p) for every posterior p,

with a strict inequality for p = p0. This yields a contradiction and the result follows.

Claim 2: If
∑

s τ 1.0(s|ω) < 1 for some state ω, then there exists a PS posterior p such that

ω ∈ Ap.

Proof. Assume, to the contrary, that
∑

s τ 1.0(s|ω0) < 1 for some state ω0, and every posterior
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p such that ω0 ∈ Ap is FS. Using Equation (10), we deduce that

1 =
∑
s

τ2(s|ω0)

=
1

µ(ω0)

∑
p:(µi

τ2|ω0,s
)i∈N=p,

for some s

Pτ2(p)

(1 + αp,ω0)

=
1

µ(ω0)

∑
p:(µi

τ1.0|ω0,s
)i∈N=p,

for some s

Pτ1.0
(p)

(1 + αp,ω0)

=
∑
s

τ 1.0(s|ω0) < 1,

where the first equality follows from the fact that τ2 is a strategy, the second and forth equations

follow from Equation (10), the third equality follows from the fact that every posterior p such

that ω0 ∈ Ap is FP, and the last inequality is by assumption. We thus reach a contradiction

and the result follows.

We will use Claims 1 and 2 to extend τ 1.0, and show that it cannot be a maximum of H. For

this purpose we need to define the notion of connected posteriors. Formally, we say that two

posteriors p, p′ ∈ Post(τ2) are connected if there exist two states (ω, ω′) ∈ Ap ×Ap′ ⊆ Cp ×Cp′ ,

where Cp ̸= Cp′ are two distinct CKCs, such that F1(ω) = F1(ω
′). Equivalently, in such a

case, we refer to Cp and Cp′ as connected, as well. Let (ω, ω
′) and F1(ω) be the connection and

connecting set of p and p′, respectively.21 We can now relate the notion of connected posteriors

to PS ones, through the following claim.

Claim 3: Fix a PS posterior p and ω ∈ Ap. Then, for every connection (ω, ω′), there exists a

PS posterior p′ such that ω′ ∈ Ap′ ∩ F1(ω).

Proof. Let p be a PS posterior with a connection (ω, ω′) and F1(ω) = F1(ω
′). Using Claim 1,

if p is PS, then
∑

s τ 1.0(s|ω) < 1 for every ω ∈ Ap, so the F1-measurability constraint implies

that
∑

s τ 1.0(s|ω′) < 1. Thus, according to Claim 2, there exists a PS posterior p′ such that

ω′ ∈ Ap′ , as needed.

21Equivalently, we refer to (ω, ω′) and F1(ω) as the connection and connecting set of the CKCs Cp and Cp′ .
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Step 4: Extending τ 1.0.

Recall that p∗ is a PS posterior. Let V be the set of all CKCs Cl such that there exists a

sequence of PS posteriors (p∗, p1, . . . , pl) where every two successive posteriors are connected

and Apl ⊆ Cl. Assume that V also contains Cp∗ . Let E ⊆ V 2 be the set of couples (C,C ′) such

that C and C ′ are connected, and denote by P∗ the set of all PS connected posteriors that

generate V . Clearly, (V,E) is a connected graph and we can use it to construct a sub-strategy τ

which mimics τ2 and Post(τ) = P∗. The proof proceeds by induction on the number of vertices

in V .

Preliminary step: |V | = 1. Assume that Cp∗ is the unique CKC in V . Because p∗ ∈ Post(τ2),

there exists a signal s∗ and state ω ∈ Cp∗ such that τ2(s
∗|ω) > 0 and (µi

τ2|ω,s∗)i∈N = p∗. Define

the sub-strategy τ 1.1(s|ω) = τ2(s
∗|ω) for every ω ∈ Ap∗ . Recall that F1 refines F2 in every CKC,

therefore τ 1.1 is well defined. Moreover, it is a sub-strategy that mimics τ2 and Post(τ 1.1) = P∗,

as needed.

Induction step: |V | = m. Assume that for every graph (V,E) where |V | = m, there exists a

sub-strategy τ 1.m that mimics τ2, and Post(τ 1.m) = P∗.

Induction proof for |V | = m+ 1. Assume that |V | = m+ 1. The distance between Cp∗ and

every vertex (i.e., every CKC) in V is defined by the shortest path between the two vertices.

Denote by Cm+1 the vertex in (V,E) with the longest path from Cp∗ .

We argue that Cm+1 has exactly one connecting set with the other vertices. Otherwise,

assume that there are at least two connecting sets. If the two originate from the same CKC in

V , then we get an F1-loop, which cannot exist. Thus, we can assume that the two sets originate

from different CKCs, denoted C and C ′. Since (V,E) is a connected graph, there exists a path

from Cp∗ to each of these CKCs. Consider the two sequences of connecting sets for these two

paths. If the two are pairwise disjoint, then we have an F1-loop from Cp∗ to Cm+1, which again

yields a contradiction. So the sequences must coincide at some stage. Take a truncation of the

sequences from the last stage in which they coincide until Cm+1. The origin of the two paths are

connected CKCs (sharing the same connecting set), denoted Cl and Cl+1, so we now have two

pairwise disjoint sequences between these two connected CKCs till Cm+1, thus generating an

F1-loop. Therefore, we conclude that there is exactly one connecting set, denoted A, between
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Cm+1 and the other CKCs in V .

Consider a refinement of F1 where A is partitioned into two disjoint sets, A1 = A \ Cm+1

and A2 = A∩Cm+1. In such a case, |V | = m and, according to the induction step, there exists

a mimicking sub-strategy τ 1.m supported on every PS connected posterior in P∗ other than the

ones related to the CKC Cm+1. Let pm+1 denote a PS posterior such that A2 ⊂ Apm+1 ⊆ Cm+1.

In case there is more than one PS posterior, the proof works similarly because every additional

posterior shares the same connecting set A.

According to the induction step, Post(τ 1.m) = P∗ \ {pm+1}, so we need to extend this

sub-strategy to support pm+1 as well. Since pm+1 ∈ Post(τ2), there exists a signal, denoted

s∗ w.l.o.g., and states ω ∈ Apm+1 ⊆ Cm+1 such that τ2(s
∗|ω) > 0 and (µi

τ2|ω,s∗)i∈N = pm+1.

Moreover, because Cm+1 is not connected (neither directly, nor indirectly) to the other CKCs in

V under the refined F1, we can assume that
∑

s τ 1.m(s|A1) >
∑

s τ 1.m(s|A2). Otherwise, we can

re-scale τ 1.m in the different unconnected elements of the refined F1. Hence, we can also assume

that there exists a signal, again denoted s∗ w.l.o.g., such that τ 1.m(s
∗|A1) > 0 = τ 1.m(s

∗|A2).

Define the following function

τ 1.m+1(s|ω) =

cmτ 1.m(s|ω), for every (ω, s) s.t. τ 1.m(s|ω) > 0,

c2τ 2(s
∗|ω), for every (ω, s) s.t. ω ∈ Apm+1 , s = s∗,

where the parameters cm > 0 and c2 > 0 are chosen to ensure that τ 1.m+1(s
∗|A1) = τ 1.m+1(s

∗|A2),

thus sustaining the F1-measurability constraint across the connecting set A, and that τ 1.m+1

remains a sub-strategy that mimics τ2 (ensuring that
∑

s τ(s|ω) ≤ 1 for every s and ω and the

that Inequality (9) holds). In conclusion, we constructed a sub-strategy that mimics τ2 and

whose support is P∗, and this concludes the induction.

Let τ 1∗ be the sub-strategy that mimics τ2 and Pτ1∗
(p) > 0 if and only if p ∈ P∗. Assume

that τ 1∗ only uses signals in some set S∗, that are not used by τ 1.0 (i.e., S∗ ∩ S = ϕ). Define

75



the following sub-strategy

τ 2.0(s|ω) =

τ 1.0(s|ω), for every (ω, s) s.t. τ 1.0(s|ω) > 0,

cτ 1∗(s|ω), for every (ω, s) s.t. τ 1∗(s|ω) > 0,

where c is a constant. Since τ 1∗(s|ω) supports only PS posteriors of τ 1.0, for every state

ω where there exists a PS posterior p of τ 1∗(s|ω) such that ω ∈ Ap, it follows from Claim

1 that
∑

s∈S τ 1.0(s|ω) < 1. Therefore, by choosing c sufficiently small, we can ensure that∑
s∈S∪S∗ τ 2.0(s|ω) =

∑
s∈S τ 1.0(s|ω) + c

∑
s∈S∗ τ 1∗(s|ω) < 1. Hence, for the extended strategy

τ 2.0(s|ω), we can guarantee that for every ω ∈ Ω,
∑

s∈S∪S∗ τ 2.0(s|ω) ≤ 1. We conclude that τ 2.0

is a sub-strategy that mimics τ2 and H(τ 2.0) > H(τ 1.0) due to the extension over PS posteriors.

This contradicts the definition of τ 1.0 as a mimicking sub-strategy the maximizes H. We can

thus conclude that H(τ 1.0) = 1, and τ 1.0 is an F1-measurable strategy that mimics τ2, as needed.

A.11 Proof of Proposition 5

Proof. iii ⇒ i. Suppose that (ω1, ω1, ω2, ω2, . . . , ωm, ωm) is not F2-balanced. It means that

there is a partition {A,B} s.t. #(A → B) ̸= #(B → A). Define

f(ω) =

 1, if ω ∈ A,

2, if ω ∈ B.

We obtain,
m∏
i=1

f(ωi)

f(ωi)
=

(
1

2

)#(A→B)

· 2#(B→A) ̸= 1.

This contradicts iii.

i ⇒ ii. Assume i . For every i, let Di = {ωj;ωj ∈ F2(ωi)} ∪ {ωj;ωj ∈ F2(ωi)} be

the set which contains all the states in the loop that share the same information set of F2

as ωi. Condition i implies that for every ωi, the partition A = Di and B = (Di)
c satisfies

#(A → B) = #(B → A). Note that |{ωj;ωj ∈ F2(ωi)}| = #(A → B) + #(A → A), and
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|{ωj;ωj ∈ F2(ωi)}| = #(B → A) + #(A → A), where #(A → A) = |{i ∈ {1, ...,m};ωi ∈

A, ωi ∈ A}|. It follows from #(A → B) = #(B → A) that

|{ωj;ωj ∈ F2(ωi)}| = |{ωj;ωj ∈ F2(ωi)}| (11)

for every ωi.

Define J = {i;ωi ∈ F2(ωi)}. We show the rest of the states are decomposed into F2-loops.

Specifically, we show that if a finite set S = {(ωj, ωj); ωj /∈ F2(ωj)}, not necessarily an F1-loop,

satisfies Eq. (11) for every ωi ∈ S, then it is covered by F2-loops.

When |S| = 2, Eq. (11) implies that this is an F2-loop. We now assume the induction

hypothesis: if Eq. (11) is satisfied for a set S = {(ωj, ωj)} and for every ωi ∈ S, and S contains

less than or equal to m pairs, then it is covered by F2-loops. We proceed by showing this

statement for sets S containing m+ 1 pairs.

We start at an arbitrary pair, say (ω1, ω1), and show that it belongs to an F2-loop. Once

this F2-loop is formed, the states outside of this loop satisfy Eq. (11) for every ωi outside of

this loop. By the induction hypothesis, this set is covered by F2-loops.

Due to Eq. (11), there is at least one ωj such that ωj ∈ F2(ω1). Consider now the two

pairs, (ωj, ωj, ω1, ω1). If this is a loop, Eq. (11) remains true when applied to the states out

of this loop. The induction hypothesis completes the argument. Otherwise, there is ωk where

k ̸= 1, j, such that ωk ∈ F2(ωj). Consider now the three pairs, (ωk, ωk, ωj, ωj, ω1, ω1). If this

is an F2-loop, the other states satisfy Eq. (11), and as before, this set is covered by F2-loops.

However, if this is not an F2-loop, Eq. (11) remains true, we annex another pair and continue

this way until we obtain an F2-loop. This loop might cover the entire set, but if not, the

remaining states are, by the induction hypothesis, covered by F2-loops. This shows ii.

ii ⇒ iii. Let f :
{
ω1, ω1, ω2, ω2, . . . , ωm, ωm

}
→ (0,∞) be a positive and F2-measurable

function. Suppose that I1, ..., Ir is a partition of {1, ...,m}, and for each t = 1, ..., r, the set(
(ωi, ωi)

)
i∈It

is an F2-loop. Since,
(
(ωi, ωi)

)
i∈It

is an F2-loop,

∏
i∈It

f(ωi)

f(ωi)
= 1,
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which implies that
m∏
i=1

f(ωi)

f(ωi)
=

r∏
t=1

∏
i∈It

f(ωi)

f(ωi)
= 1.

This proves iii.

A.12 Proof of Proposition 6

Proof. Fix an Fi-loop Li =
(
(ωj, ωj)

)
j∈I

where I = {1, 2, . . . ,m}. Let Cj denote the CKC that

contains every pair (ωj, ωj).

Proof for first statement: Assume that Li intersects the same CKC at least twice, so

that Cl1 = Cl2 , where l1 < l2, is such CKC. Because Li is a loop, the two pairs (ωl1 , ωl1)

and (ωl2 , ωl2) that are in this CKC cannot be adjacent in the loop Li, i.e., l1 ̸= l2 ± 1. De-

fine the following sub-loop of Li by omitting every state from ωl1 to ωl2 . Formally, L′
i =

(ω1, ω1, . . . , ωl1−1, ωl1 , ωl2 , ωl2+1, . . . , ωm, ωm). This is a well-defined sub-loop of Li (as ωl1 , ωl2 ∈

Cl1 while all other parts of the sub-loop match those of Li), which implies that Li is not ir-

reducible. Note that the part we truncated from the loop Li also forms a sub-loop, namely

L′′
i = (ωl2 , ωl1 , ωl1+1, ωl1+1, . . . , ωl2−1, ωl2−1).

Proof for second statement: Assume, by contradiction, that Li is irreducible, yet it has

a pair of states (ωl, ωl) such that ωl ∈ Fi(ωl). This implies that {ωl−1, ωl, ωl, ωl+1} ⊆ Fi(ωl) =

Fi(ωl+1). We can assume that Cl−1 ̸= Cl+1, otherwise the first statement suggests that Li is not

irreducible. So, define the following sub-loop of Li by L′
i =

(
(ωj, ωj)

)
j∈I\{l}

. Note that L′
i is

a well-defined sub-loop, as Cl−1 ̸= Cl+1 and ωl−1 ∈ Fi(ωl+1), thus contradicting the irreducible

property.

Proof for third statement: Assume, w.l.o.g., that Fi(ω1) ̸= Fi(ω1). If Li intersects

the same CKC twice, then we can follow the proof of the first statement, truncate the loop,

and take a sub-loop that has an informative pair of states and intersects every CKC at most

once. Thus, w.l.o.g., assume that Li intersect every CKC at most once. Denote the set of

informative pairs by Ic = {j : Fi(ωj) ̸= Fi(ωj)} and define the following ordered sub-loop of

Li by L′
i =

(
(ωj, ωj)

)
j∈Ic

. In simple terms, L′
i is generated from Li by truncating all non-

informative pairs (ωj, ωj), where Fi(ωj) = Fi(ωj), similarly to the process used in the proof of
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the second statement. Focusing on L′
i, note that: (i) all pairs are pairwise disjoint; (ii) every

CKC is crossed at most once; (iii) ωj+1 ∈ Fi(ωj) as we removed only non-informative pairs;

and (iv) ωj ̸= ωj are both in the same CKC as in the original loop. Hence, L′
i is a well-defined

loop and an Fi-fully-informative sub-loop of Li.

Proof of fourth statement: If the loop Li is irreducible, then the statement holds.

Otherwise, it is not irreducible and we will prove by induction on the number of pairs m in L1.

If m = 2, then Li is irreducible. If m = 3 and Li is not irreducible, then it has a sub-loop with

two pairs. Assume w.l.o.g. that this sub-loop is based on the states {ω1, ω1, ω2, ω2}. It cannot

be that Fi(ω1) = Fi(ω2), because that would make (ω2, ω2) a non-informative pair. So the

sub-loop is (ω1, ω1, ω2, ω2) such that Fi(ω1) = Fi(ω2), but Fi(ω1) = Fi(ω3) and Fi(ω2) = Fi(ω3),

so the pair (ω3, ω3) is non-informative.

Assume the statement holds for m = k pairs, and consider an Li loop with k+1 pairs. If the

loop intersects the same CKC more than once, we can split is to two sub-loops (as previously

done), and use the induction hypothesis for each. Hence, we can assume that the loop does not

intersect the same CKC twice.

Because the loop is not irreducible, there are two states ωi1 and ωi2 that are not adjacent

in the loop (so i1 ≥ i2 + 2), yet Fi(ωi1) = Fi(ωi2). The last equality also suggests that

Fi(ωi1−1) = Fi(ωi2+1). If i1 = i2 + 2, then there exists only one pair between the two states.

This implies that the pair (ωi2+1, ωi2+1) = (ωi1−1, ωi1−1) is non-informative, contradicting the

fact that Li is Fi-fully-informative. So we conclude that i1 ≥ i2 + 3. Define the following two

loops L′
i = (ωi1 , ωi1 , . . . , ωi2 , ωi2) and L′′

i = (ωi2+1, ωi2+1, . . . , ωi1−1, ωi1−1), where the ordering

of states follows the original loop Li. These are two well-defined Fi-loops with less than k + 1

pairs each, so the induction hypothesis holds and the result follows.

If Li does not intersect the same CKC more than once and does not have at least 4 states

in the same partition element, then it is irreducible.

Proof of fifth statement: If the loop has a non-informative pair ωj ∈ Fi(ωi), then it

contains 4 states from the same partition element, so assume that the loop is Fi-fully-informative

and that it does not intersects the same CKC more than once. Thus, we need to prove that it

has at least 4 states in the same partition element of Fi.
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Consider the strict sub-loop L−
i of Li. It consists of pairs, taken from the original loop.

Because Li does not intersect the same CKC more than once, all the pairs of L−
i are a strict

subset of the pairs of Li. This implies that some pairs were omitted from Li when generating

L−
i , so assume w.l.o.g. that the pair {ω1, ω1} is not included in L−

i . This implies that one

pair {ωj, ωj} precedes in L−
i a different one that it precedes in Li. That is, Fi(ωj) = Fi(ωj+1)

according to Li, whereas Fi(ωj) = Fi(ωk) where k ̸= j + 1, according to L−
i . But also Fi(ωk) =

Fi(ωk−1) according to Li. Thus, {ωj, ωj+1, ωk, ωk−1} are in the same partition element of Li, as

stated and the result follows.

A.13 Proof of Theorem 6

Proof. Suppose that Oracle 1 dominates Oracle 2. If there exists a CKC in which F1 does not

refine F2, Theorem 4 states that Oracle 1 does not dominate Oracle 2 in that CKC. In other

words, there exists τ2 defined on this CKC, such that for every τ1, it follows that Post(τ1) ⊈

Post(τ2). We extend the definition of τ2 to the entire state space in an arbitrary way, and still

for every τ1, it follows that Post(τ1) ⊈ Post(τ2), and we can use Proposition 3 accordingly.

We proceed to show that any F1-loop is F2-balanced, which is equivalent to the existence

of a cover by loops of F2. Suppose, to the contrary, that an F1-loop (ω1, ω1, ω2, ω2, . . . , ωm, ωm)

is not F2-balanced. This means that there is an F2-measurable partition {A,B} of these states

such that Eq. (2) is not satisfied. We define an F2-measurable signaling function that obtains

two signals, α and β. Over the states of the loop, let

τ2(α|ω) =

x, if ω ∈ A,

y, if ω ∈ B,

(12)

and τ2(β|ω) = 1− τ2(α|ω). On other states, τ2 is defined arbitrarily. The numbers x, y ∈ (0, 1)

are chosen so that lnx−ln y
ln (1−x)−ln (1−y)

is irrational.

Claim 1: If Post(τ1) ⊆ Post(τ2), then any signal of τ1 induces the same posteriors as α does

or as β does in every CKC.
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Claim 2: For any signal s of τ1 and for any i, τ1(s|ωi)
τ1(s|ωi)

∈ {x
y
, 1−x
1−y

, y
x
, 1−y
1−x

} . Therefore,

m∏
i=1

τ1(s|ωi)

τ1(s|ωi)
=

(
x

y

)ℓ1

·
(
1− x

1− y

)ℓ2

·
(y
x

)k1
·
(
1− y

1− x

)k2

,

where ℓ1 + ℓ2 = |{i;ωi ∈ A and ωi ∈ B}| and k1 + k2 = |{i;ωi ∈ B and ωi ∈ A}|.

Claim 3: For any signal s of τ1,
∏m

i=1
τ1(s|ωi)
τ1(s|ωi)

= 1.

We therefore obtain (x
y
)ℓ1(1−x

1−y
)ℓ2( y

x
)k1( 1−y

1−x
)k2 = 1. We conclude that there are whole num-

bers, say ℓ = ℓ1 − k1 and k = k2 − ℓ2 such that (x
y
)ℓ = (1−x

1−y
)k. Since lnx−ln y

ln (1−x)−ln (1−y)
=

ln x
y

ln 1−x
1−y

is irrational, ℓ = k = 0, implying that Eq. (2) is satisfied. This is a contradiction, so every

F1-loop is F2-balanced.

Moving on to the third part of the theorem, fix an irreducible F1-loop L1, and consider an

irreducible cover by a unique F2-loop L2, i.e., L2 covers L1 and both are irreducible w.r.t. the

relevant partition. Note that if L2 is also order-preserving, it implies that it matches L1.

Assume, by contradiction, that L2 is not order-preserving and the two loops do not match

one another. Denote L1 = (ω1, ω1, . . . , ωm, ωm) and L2 = (ω1, ω1, ωi2 , ωi2 , . . . , ωim , ωim). Thus,

there exist indices k > j > 1 such that ωk precedes ωj in L2. In simple terms, it implies that

though L2 consists of the same pairs as L1, the ordering of pairs throughout the two loops

differs, as suggested in Footnote 16.

Since the two loops are irreducible, it follows from Proposition 6 that they intersect every

CKC at most once and that both are fully-informative. Moreover, for every state ω in every loop

Li, every set Fi(ω) contains two states from the loop Li (otherwise, the loop is not irreducible).

So, one can define an Fi-measurable function τi such that τi(s|ωl) = τi(s|ωl−1) ̸= τi(s|ωl′) for

every ωl ̸= ωl′ in the loop.

To simplify the exposition, partition the states of L2 into three disjoint sets: the set A2
1 =

{ω1, . . . , ωk} contains all the states of L2 from ω1 till ωk (following the order of L2), A
2
k =

{ωk, . . . , ωj} contains all the states of L2 from ωk till ωj, and A2
j = {ωj, . . . , ω1} which contains

all remaining states of L2. Follow a similar process with L1, so that A1
1 = {ω1, . . . , ωj} contains

all the states of L1 from ω1 till ωj (following the order of L1), A
1
j = {ωj, . . . , ωk} contains all

the states of L1 from ωj till ωk, and A1
k = {ωk, . . . , ω1} which contains all remaining states of
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L1.

Denote by Cl the CKC of the pair (ωl, ωl). Fix two distinct signals s1 and s2, and define

the signaling function τ2 as follows:

τ2(s1|ω) = 1− τ2(s2|ω) =



p1, if ω ∈ A2
1 = {ω1, . . . , ωk},

p2, if ω ∈ A2
k = {ωk, . . . , ωj},

p3, if ω ∈ A2
j = {ωj, . . . , ω1},

p4, if ω ∈ Ω \
⋃

i=1,j,k A
2
i ,

where the probabilities {p1, p2, p3, p4} are chosen as in the strategy defined in Equation (1).

Because the loop is irreducible, intersects every CKC at most once and F2-fully-informative, τ2

is a well-defined F2-measurable function.

The result of Lemma 2 holds in every CKC of the loop (though with different probabilities).

So given a CKC Cl, if there exists τ1 such that Post(τ1) ⊆ Post(τ2), then for every signal

t ∈ Supp(τ1) there exists a signal s ∈ {s1, s2} and a constant c > 0 such that τ1(t|ω) = cτ2(s|ω)

for every ω ∈ Cl. Therefore, in every CKC Cl and for every signal t, there exists a signal s such

that τ2(s|ωl)
τ2(s|ωl)

= τ1(t|ωl)
τ1(t|ωl)

. Fix such a strategy τ1.

Notice that in every CKC Cl ̸= C1, Cj, Ck and for every signal s ∈ {s1, s2}, we get τ2(s|ωl) =

τ2(s|ωl). Thus,
τ1(t|ωl)
τ1(t|ωl)

= 1 for every t and every l ̸= i, j, k. This implies that for every feasible

signal t restricted to the loop L1,

τ1(t|ω) =


at, if ω ∈ A1

1 = {ω1, . . . , ωj},

bt, if ω ∈ A1
j = {ωj, . . . , ωk},

ct, if ω ∈ A1
k = {ωk, . . . , ω1},

where at, bt, ct ∈ (0, 1]. Evidently, the parameters at, bt and ct can vary across the feasible

signals.

In addition, Lemma 2 states that in every CKC, τ1(t|ω) is proportional to τ2(si|ω) for some
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signal si ∈ {s1, s2}. This yields the following constraints:

τ1(t|ω1)

τ1(t|ω1)
=

ct
at

=
τ2(si|ω1)

τ2(si|ω1)
∈
{p3
p1
,
1− p3
1− p1

}
,

τ1(t|ωj)

τ1(t|ωj)
=

at
bt

=
τ2(si|ωj)

τ2(si|ωj)
∈
{p2
p3
,
1− p2
1− p3

}
,

τ1(t|ωk)

τ1(t|ωk)
=

bt
ct

=
τ2(si|ωk)

τ2(si|ωk)
∈
{p1
p2
,
1− p1
1− p2

}
.

Because the two loops cover one another and specifically because L2 is F1-covered, Proposition

5 states that
∏m

l=1

τ1(t|ωil
)

τ1(t|ωil
)
= 1, which leaves only two possibilities for the ratios { ct

at
, at
bt
, bt
ct
}

above: either they equal {p3
p1
, p2
p3
, p1
p2
} respectively, or {1−p3

1−p1
, 1−p2
1−p3

, 1−p1
1−p2

}. This follows from the

uniqueness of the ratios, as stated in Lemma 2. Note that this must hold for every feasible

signal t of τ1 across the loop.

τ1(t|ω) t1 t2
ω1 λ1c1 λ2c2
ω1 λ1a1 λ2a2
ωj λ1a1 λ2a2
ωj λ1b1 λ2b2
ωk λ1b1 λ2b2
ωk λ1c1 λ2c2

Figure 27: The structure of τ1 restricted to the states {ω1, ω1, ωj , ωj , ωk, ωk}, where c1
a1

= p3

p1
, b1
c1

= p1

p2
, c2
a2

= 1−p3

1−p1

and b2
c2

= 1−p1

1−p2
and λ1, λ2 > 0.

Thus, if we focus on the states {ω1, ω1, ωj, ωj, ωk, ωk} and group together all signals t with

the same distribution on these states, then for some positive constants λ1, λ2 > 0 we get the

strategy defined in Figure 27. Plugging in the relevant ratios yields the probabilities given in

Figure 28.

Recall that the rows must sum to 1, so that τ1 is a well-defined strategy. So, we get the
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τ1(t|ω) t1 t2
ω1 λ1c1 λ2c2
ω1 λ1c1

p1
p3

λ2c2
1−p1
1−p3

ωj λ1c1
p1
p3

λ2c2
1−p1
1−p3

ωj λ1c1
p1
p2

λ2c2
1−p1
1−p2

Figure 28: The structure of τ1 restricted to the states {ω1, ω1, ωj , ωj}, where probabilities are presented in terms
of c1, c2, λ1 and λ2.

following system of linear equations, in which (x, y) = (λ1c1, λ2c2) and:

x+ y = 1,

p1
p3
x+

1− p1
1− p3

y = 1,

p1
p2
x+

1− p1
1− p2

y = 1,

which does not have a solution since p1, p2, p3 are required to be distinct. Thus, we conclude

that the loops must sustain the same ordering of pairs, and therefore coincide as needed. This

concludes the third and final part of the theorem.

A.14 Proof of Theorem 7

Proof. We first define an auxiliary set Ω, which groups together states that are in the same

partition element of F2 within CKCs. Formally, define the set Ω such that η(ω′) ∈ Ω if and only

if η(ω′) = {ω ∈ Ω : ω, ω′ ∈ Cj, F2(ω) = F2(ω
′)}. Accordingly, define the partition F2 to be

discrete in every CKC, such that F2(η(ω)) = F2(η(ω
′)) if and only if F2(ω) = F2(ω

′). Note that

F2 is essentially a projection of F2 onto Ω. In addition, F1 is defined as follows: (i) discrete in

every CKC, similarly to F2; (ii) F1(η(ω)) = F1(η(ω
′)) if ω and ω′ are not in the same CKC, and

there exist ω ∈ η(ω) and ω′ ∈ η(ω′) such that F1(ω) = F1(ω′); and (iii) F1 forms a partition

(i.e., given (i) and (ii), if two elements of F1 contain the same state η(ω), they are unified into

one element).

We now prove that F1 = F2 in every CKC and that there are no F1-loops. Thus, by Theorem

5, any F2-measurable strategy τ2 (which, extended to Ω, is also F2-measurable) can be imitated

by an F1-measurable strategy τ1.
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Step 1: F1 = F2 in every CKC.

By definition, F2 refines F1, so we need to prove that F1 also refines F2 in every CKC.

Assume, by contradiction, that F1(η(ω)) = F1(η(ω
′)) where ω and ω′ are in the same CKC,

whereas F2(η(ω)) ̸= F2(η(ω
′)). This suggests that F2(ω) ̸= F2(ω

′), which implies that F1(ω) ̸=

F1(ω
′). According to the construction of F1, we conclude that the equality F1(η(ω)) = F1(η(ω

′))

followed from the partition-formation stage described in (iii) above, through at least one other

CKC. Thus, there exists an F1-loop which connects a state in η(ω) with a state in η(ω′).

Without loss of generality, assume these states are ω and ω′. Because every F1-loop is F2-non-

informative, it follows that F2(ω) = F2(ω
′), a contradiction.

Step 2: There are no F1-loops.

An F1-loop implies that an F1-loop exists. By construction, all Ω states in every CKC

are F2-equivalent (i.e., grouped together according to F2). Because every F1-loop is F2-non-

informative, it implies that the loop consists of only one Ω state in every CKC, and not two.

This contradicts the definition of a loop.

Step 3: F1 can mimic F2.

Fix a strategy τ2, and let τ2 be the projected strategy on Ω. Because F1 = F2 in every

CKC and there are no F1-loops, there exists an F1-measurable strategy τ1 that imitates τ2.

Therefore, one can lift τ1 to Ω to create τ1, whose projection onto Ω matches τ1. Thus, the

strategy τ1 imitates τ2, as needed.

A.15 Proof of Proposition 7

Proof. Denote the two CKCs by C1 and C2. One part of the statement follows directly from

Theorem 6, so assume that F1 refines F2 in every CKC and any F1-loop is F2-balanced. If there

are no F1-loops, then the result follows from Theorem 5, so assume there exists at least one

F1-loop, and every such loop is F2-balanced.

Take any F1-loop (ω1, ω1, ω2, ω2) with four states. We argue that either it is also an F2-loop

or it is F2-non-informative. Otherwise, we can assume (without loss of generality) that F2(ω1) ̸=

F2(ωi), for every i = 1, 2. So, there are only two possibilities left: either F2(ω1) = F2(ω2) or

F2(ω1) ̸= F2(ω2). If F2(ω1) = F2(ω2), then there exists an F2-measurable partition of the four
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states such that A = {ω1, ω2} and B = {ω1, ω2}, which is not balanced. Otherwise, there exists

another non-balanced F2-measurable partition of the form A = {ω1} and B = {ω1, ω2, ω2}. In

any case, we get a contradiction.

The proof now splits into two cases: either there exists an F1-loop (ω1, ω1, ω2, ω2) and an

index i such that F2(ωi) ̸= F2(ωi), or every such loop is F2-non-informative. If indeed every

such loop is F2-non-informative, Theorem 7 states that Oracle 1 dominates Oracle 2, so we

need only focus on the former.

Assume that there exists an F1-loop (ω1, ω1, ω2, ω2) and an index i such that F2(ωi) ̸= F2(ωi).

Denote this couple by {ω1, ω1} ⊆ C1. The previous conclusion implies that it is also an F2-loop.

We claim that, under these conditions, every τ2 is F1-measurable. Note that F1 refines F2 in

every CKC, so we need to verify that for every (ω, ω) ∈ C1 × C2 such that F1(ω) = F1(ω), it

follows that F2(ω) = F2(ω).

Take (ω, ω) ∈ C1 × C2 such that F1(ω) = F1(ω). If ω = ω1 or ω = ω1, then (ω, ω) are

part of the previously stated F2-loop, so F2(ω) = F2(ω). Otherwise, we can construct two new

F1-loops (ω, ω, ω1, ω2) and (ω, ω, ω2, ω1). Because F2(ω1) ̸= F2(ω1), either F2(ω) ̸= F2(ω1) or

F2(ω) ̸= F2(ω1). The previous conclusion again implies that (ω, ω) are a apart of an F2-loop,

so F2(ω) = F2(ω), as needed.

A.16 Proof of Theorem 8

Proof. We start by assuming that F1 and F2 are equivalent. According to Theorem 6, every

Fi refines F−i in every CKC, and every Fi-loop is covered by F−i-loops. Fix an irreducible

Fi-loop with at least 6 states, denoted Li, and consider a cover by F−i-loops. There are two

possibilities: either the cover constitutes a single loop, or else. If the cover contains a shorter

loop, say L′
−i, then that loop is not Fi-covered because Li is irreducible, and this contradicts

Theorem 6. Moreover, the cover cannot have non-informative pairs where F−i(ωi) = F−i(ωi),

because the two partitions match one another in every CKC and Li is irreducible. So, the cover

consists of a single irreducible F−i-loop, and Theorem 6 states that it is order-preserving. Thus,

Li and L−i coincide as stated.

Moving to the other direction, assume that Fi refines F−i in every CKC, that any Fi-loop
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has a cover of F−i-loops, and every irreducible Fi-loop with at least 6 states is an irreducible

F−i-loop. Let us prove that Oracle 1 dominates Oracle 2 (and the reverse dominance follows

symmetrically).

We start with two simple observations. First, in case F1 has no loops, then the statement

follows from previous results, so assume F1 has loops. Second, we say that two CKCs C1 and

C2 are connected if there exist ω1 ∈ C1 and ω2 ∈ C2 such that F1(ω1) = F1(ω2). If there exists

a CKC C which is not connected to any other CKC (i.e., for every ω ∈ C, the partition element

F1(ω) ⊆ C), then Oracle 1 dominates Oracle 2 conditional on that CKC and independently of

all other CKCs. Thus, without loss of generality, we can assume that all CKCs are connected,

either directly or sequentially.

For this part, we will need to define the notion of type-2 irreducible loops, which are fully-

informative loops that do not have four states in the same information set of the relevant

Fi.

Definition 9. Let Li be an Fi-loop. We say that the loop is type-2 irreducible if it does not

have four states in the same information set (i.e., partition element) of Fi.

We shall use this notion of type-2 irreducible F1-loops as building blocks upon which every

F2-measurable τ2 is also F1-measurable. For that purpose, we start by proving in the following

Claim 2 that every type-2 irreducible F1-loop is also an F2-loop. Next, we will extend this

measurability result to every set of type-2 irreducible F1-loops that intersect the same CKCs,

and finally derive it to all CKCs that these loops intersect. This sets of CKCs, to be later

defined as clusters, will be the basic sets upon which every F2-measurable strategy is also

F1-measurable.

Claim 2. Every type-2 irreducible F1-loop L1 is an F2-loop.

Proof. If L1 is irreducible, then it is also an irreducible F2-loop, and the result holds. Thus

assume that L1 is not irreducible. Using the fifth result in Proposition 6, we deduce that L1

intersects the same CKC more than once. Using the proof of the first result in Proposition 6,

we can decompose L1 to two disjoint strict sub-loops of F1. This can be done repeatedly, so

that L1 is decomposed to sub-loops that do not intersect the same CKC more than once. This
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implies that every such loop is type-2 irreducible. Thus, every such sub-loop is irreducible, and

so it is also an F2-loop.

Note that the decomposition process occurs within every relevant CKC C and that F1|C =

F2|C . That is, once there are two pairs of the same loop within the same CKC, we can decompose

the loop into two disjoint loops by rearranging these four states. So, one can reverse the process

and recompose the sub-loops of F2 to regenerate the original loop L1, which is now also an F2-

loop, as needed.

Once we dealt with individual type-2 irreducible loops, we move to loops that intersect the

same CKC. For that purpose, we need to prove the following supporting, general Claim 3 which

states that every Fi-fully-informative loop Li can be decomposed to type-2 irreducible Fi-loops.

Claim 3. Every Fi-fully-informative loop Li that is not type-2 irreducible can be decomposed

to type-2 irreducible Fi-loops.

Proof. The proof is done by induction on the number of pairs m in Li. If m = 2, then it is

irreducible, as needed. Assume that the statement holds for m = k, and consider a loop with

k+1 pairs. If it is not type-2 irreducible, then it has four different states {ωj, ωj+1, ωl, ωl+1} in

the same information set of Fi, where l > j+1 and l+1 < j so that the two pairs are not adjacent

in the original loop Li (otherwise, the loop has a non-informative pair). Note that additional

connection may exists, but in any case ωj+1 is in the same partition element as ωj, and the

same holds for ωl and ωl+1. Consider the loops (ωj, ωj, ωl+1, ωl+1, ωl+2, ωl+2, . . . , ωj−1, ωj−1) and

(ωl, ωl, ωj+1, ωj+1, ωj+2, ωj+2, . . . , ωl−1, ωl−1). The two sub-loops are based on the original loop,

other than the first pair, see Figure 29
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Fi Fi

Figure 29: A fully-informative loop that is not type-2 irreducible, with four states in the same information set
of Fi. The red rectangle denotes the same partition element of Fi, and the green edges denote the additional
states of the original loop.

Each of these sub-loops is Fi-fully-informative, and have strictly less than k pairs. Thus,

the induction hypothesis holds, and they are either type-2 irreducible, or can be separately

decomposed to type-2 irreducible loops, so the result follows.

Note that even without the induction hypothesis, we can repeat the decomposition process,

so that all the connections of the original loop that are based on information sets of Fi with no

more than two states (in the loop) are kept in one of the sub-loops.

Using Claim 3, we now prove in the following Claim 4, that every F2-measurable strategy

on two type-2 irreducible F1-loops with a joint CKC (i.e., pass through the same CKC) is

F1-measurable.

Claim 4. Fix two type-2 irreducible F1-loops L1 and L′
1 that share at least one CKC. Then,

every τ2|L1∪L′
1
is F1-measurable.

Proof. Fix two type-2 irreducible F1-loop L1 and L′
1, and assume that they share at least one

CKC. Denote L1 = (ω1, ω1, ω2, ω2, . . . , ωm, ωm) and L′
1 = (ω′

1, ω
′
1, ω

′
2, ω

′
2, . . . , ω

′
m′ , ω′

m′). Assume,

by contradiction, that there exists a strategy τ2|L1∪L′
1
which is not F1-measurable. As already

proven, each of these loops is also an F2-loop, so the measurability constraint implies that there

exist ω ∈ L1 and ω′ ∈ L′
1 such that F2(ω) ̸= F2(ω

′) whereas F1(ω) = F1(ω
′). Because F1 and

F2 match one another in every CKC, this suggests that ω and ω′ are in two different CKCs.

Denote a shared CKC by Cj in which there are the pairs (ωj, ωj) and (ω′
j, ω

′
j) taken from L1
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and L′
1 respectively. Note that the two pairs may coincide, as well as contain one of the states

ω and ω′, but not both (because the two are in different CKCs). See Figure 30

Cj

wj wj

w′
j w′

j

F1

F1

w1

w′
1

F1

Figure 30: Two type-2 irreducible loops of F1 that share at least one CKC.

Let us now compose a type-2 irreducible F1 loop, using the fact that F1(ω) = F1(ω
′).

Without loss of generality, assume that ω = ω1 and ω′ = ω′
1, and that ω1 is not in Cj. Moreover,

it cannot be the case that ω1 and ω′
1 are both in the same loop, say L1, because L1 is also an

F2-loop and that would imply that either F2(ω) = F2(ω
′) in case ω′

1 = ωm, or that L1 is not a

type-2 irreducible loop in case ω′
1 ̸= ωm. Also, it must be that F1(ω

′
1) = F1(ω

∗) where ω∗ ∈ L1

if and only if ω∗ ∈ {ω1, ωm}, otherwise L1 is not type-2 irreducible.

We now split the proof to four possibilities:

• ω′
1 ∈ Cj.

• ω′
1 /∈ Cj and |{ωj, ωj} ∩ {ω′

j, ω
′
j}| = 0, 1, 2.

Assume that ω′
1 ∈ Cj. Consider the loop (ω1, ω1, ω2, ω2, . . . , ωj, ω

′
1). This loop matches L1

up to state ωj and F1(ω1) = F1(ω
′
1). Thus, it is a well-defined type-2 irreducible F1-loop, hence

also an F2-loop. Therefore, F2(ω1) = F2(ω
′
1) and we reach a contradiction.

Moving on to the next possibility, assume that ω′
1 /∈ Cj and |{ωj, ωj} ∩ {ω′

j, ω
′
j}| = 0.

Consider the loop (ω1, ω1, ω2, ω2, . . . , ωj, ω
′
j, ω

′
j+1, ω

′
j+1, . . . , ω

′
1, ω

′
1). If ωj and ω′

j are in different

partition elements of F1, then this is a well-defined F1-fully-informative loop. If the two states

are in the same partition element, then we can omit this pair from the loop and get a shorter
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loop (in terms of pairs). This process could be done repeatedly, until we get a well-defined

F1-fully-informative loop which starts with ω1 and ends with ω′
1. If it is a type-2 irreducible

F1-loop, then it is also an F2-loop, and F2(ω1) = F2(ω
′
1). Thus, assume that it is not type-2

irreducible, which implies that it has at least four states in the same partition element of F1.

These four states include neither ω1 nor ω′
1, because that would imply that either L1 or L′

1 is

not type-2 irreducible. Now we can apply Claim 3, to decompose this F1-fully-informative loop

to type-2 irreducible F1-loops, where at least one maintains the connection between ω1 nor ω′
1

(see the comment at the end of the proof of Claim 3). We thus conclude that it is also an

F2-loop and F2(ω1) = F2(ω
′
1).

The next possibility is that ω′
1 /∈ Cj and |{ωj, ωj} ∩ {ω′

j, ω
′
j}| = 1. If either ω′

j ∈ {ωj, ωj} or

ω′
j = ωj , then we can follow a similar proof as in the previous case where |{ωj, ωj}∩{ω′

j, ω
′
j}| =

0, so assume that ω′
j = ωj. In that case, we can re-define the previous loop by omitting ωj and

ω′
j to get (ω1, ω1, ω2, ω2, . . . , ωj−1, ω

′
j+1, ω

′
j+1, . . . , ω

′
1, ω

′
1). Again, this is either a well-defined

F1-fully-informative loop, or could be reduced to such a loop. Applying the same arguments as

before, we conclude that there exists a type-2 irreducible F1-loop which maintains the connection

between ω1 nor ω′
1, so it is also an F2-loop and F2(ω1) = F2(ω

′
1).

The last possibility is that ω′
1 /∈ Cj and |{ωj, ωj}∩{ω′

j, ω
′
j}| = 2, but in that case the analysis

in the previous possibilities holds, and we reach the same conclusion that F2(ω1) = F2(ω
′
1), as

needed.22

Next, we extend the result of Claim 4 to more than two loops. Specifically, we say that two

loops Li and L′
i are connected if either they share at least one CKC, or there exists a sequence

of loops starting with Li and ending with L′
i where each two consecutive loops share at least

one CKC.

Claim 5. Consider a set A of type-2 irreducible and connected F1-loops, i.e., every two loops

are connected by one of these type-2 irreducible loops. Then, every F2-measurable τ2|A is F1-

measurable.

22Note that the proof of Claim 4 also holds if ω and ω′ are not in the original L1 and L′
1 loops, respectively,

but are simply states in different CKCs that these loops intersect. That is, if ω and ω′ are in different CKCs
that L1 and L′

1 intersect and F1(ω) = F1(ω
′), we can construct an F1-fully-informative loop that starts with ω

and ends with ω′ in a similar manner as before, and eventually conclude that F2(ω) = F2(ω
′).
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Proof. Let us prove this by induction on the number of loops. The case of two loops is proved

in Claim 4, so assume the statement holds for m loops, and consider a set of m + 1 type-2

irreducible and connected F1-loops. Further assume, by contradiction, that there exists an

F2-measurable strategy over this set that is not F1-measurable. Thus, there exists ω and ω′

such that F2(ω) ̸= F2(ω
′) whereas F1(ω) = F1(ω

′). Evidently, ω and ω′ are in different loops

and different CKCs. Denote the loops of ω and ω′ by L1 and L′
1, respectively.

If L1 and L′
1 are connected directly (through a joint CKC) or through at most m loops

(including L1 and L′
1), then the induction hypothesis holds and every F2-measurable strategy

this set of loops is F1-measurable, implying that F2(ω) = F2(ω
′). Thus, assume that L1 and

L′
1 are connected through a sequence of all the m + 1 loops (including L1 and Lm+1). Note

that ω′ cannot be the in the same partition element as any other state from this set of loops,

other than ω, the state connected to ω in L1, and the state connected to ω′ in L′
1. Otherwise,

either one of these loops is not type-2 irreducible, or the F2-measurability constraints with every

intermediate loop is met (by the induction hypothesis) and again we get that F2(ω) = F2(ω
′).

Thus, we can now follow the same stages as in the proof of Claim 4 and generate an F1-

fully-informative loop based on the sequence of loops connecting L1 and L′
1 (as well as ω and

ω′), which starts with ω1 and ends with ω′
1. In this case, Claim 3 holds and we get a type-2

irreducible F1-loop, which starts with ω1 and ends with ω′
1, that is also an F2-loop. We therefore

conclude that F2(ω) = F2(ω
′) and the induction follows accordingly.

After we established that every F2-measurable strategy over a set of connected loops is

F1-measurable, let us extend this result to all the CKCs that these loops intersect. For that

purpose, let A be a maximal set of connected loops, where every two are connected, and let

CA be the set of all CKCs that intersect one of these loops (that is, every CKC contains a

pair of states from one of these loops). We refer to every CA as a cluster. We argue that

every F2-measurable strategy over a cluster CA is F1-measurable. To see this, recall Footnote

22 which states that the proof of Claim 4 holds for every ω and ω′ in two different CKCs that

intersect two connected loops L1 and L′
1, respectively. Namely, for every two such states ω and

ω′ where F1(ω) = F1(ω
′), it follows that F2(ω) = F2(ω

′). So, as argued in the proof of Claim 5,

we conclude that every F2-measurable strategy over a cluster is F1-measurable.
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Observation 3. Every F2-measurable strategy over a cluster is F1-measurable.

Once we have established that every F2-measurable strategy over a cluster is F1-measurable,

let us consider a partition Ω∗ of Ω into clusters and individual CKCs that are not part of clusters.

Note that any two elements of the partition Ω∗ jointly intersect at most one partition element

of F1, otherwise the two components would be in the same cluster. To see this, consider the

different possible intersections of elements in Ω∗. If both elements A1 and A2 are CKCs, then

any two different partition elements of F1 that intersect both A1 and A2 would form a type-2

irreducible F1-loop. Otherwise, one of these elements is a cluster, say A1, and it follows from

previous proofs that for every ω and ω′ that belong to the same cluster (but in different CKCs)

and F1(ω) = F1(ω
′), then one can form an F1-fully-informative loop that starts with ω and ends

with ω′. Thus, in case ω and ω′ are in cluster A1 and in different partition elements of F1 that

intersect A2 (whether A2 is a CKC or another cluster), one can form an F1-fully-informative

loop that intersects A1 and A2. Using Claim 3, we can conclude that A1 and A2 belong to the

same cluster. This result is summarized in the following observation.

Observation 4. Fix two elements A1, A2 ∈ Ω∗. Then, there exists at most one partition

element F1(ω) of F1 such that F1(ω) ∩ A1 and F1(ω) ∩ A2 are non-empty sets.

We would now want to prove that Oracle 1 can mimic every F2-measurable strategy de-

fined over Ω∗. For this purpose, we present the following Lemma 3 which relates to the F2-

measurability constraints over different sets of CKCs, that are not in the same cluster (i.e.,

they are not connected by type-2 irreducible F1-loops).

Lemma 3. Fix two disjoint sets A1, A2 ⊆ Ω that do not intersect the same CKCs, and denote

A = A1 ∪ A2. Assume that:

• For every i and for every F2-measurable τ2|Ai
, there exists an F1-measurable τ i1|Ai

, such

that µτ1|Ai
= µτ2|Ai

.

• For every ω1, ω
′
1 ∈ A1 and ω2, ω

′
2 ∈ A2 such that F1(ω1) = F1(ω2) and F1(ω

′
1) = F1(ω

′
2),

it follows that F1(ω1) = F1(ω
′
1).

Then, for every τ2|A, there exists τ1|A such that µτ1|Ai
= µτ2|Ai

for every i = 1, 2.
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Proof. Fix τ2|A and τ i1|Ai
where i = 1, 2, such that µτ2|Ai

= µτ i1
|Ai

for every i. Define the sets

Ãi = {ωi ∈ Ai : ∃ω−i ∈ A−i, F1(ωi) = F1(ω−i)} for every i = 1, 2. The second condition of the

claim implies that all the states in Ã1∪ Ã2 are in the same partition element of F1. To see this,

fix ω1 ∈ Ã1 and, by definition, there exists a state ω2 ∈ Ã2 such that F1(ω1) = F2(ω2). If there

exists another ω′
1 ∈ Ã1, it is either connected to ω2 (i.e., F1(ω

′
1) = F1(ω2)), or to some ω′

2 ∈ Ã2,

and in that case the condition implies that F1(ω1) = F1(ω
′
1). The same holds for every ω2 ∈ Ã2

For every i = 1, 2, let Si be the signals induced by τ i1|Ai
. Define the following strategy τ1:

τ1((s1, s2)|ω) =

τ 11 (s1|ω)τ 21 (s2|Ã2), if ω ∈ A1, (s1, s2) ∈ S1 × S2,

τ 11 (s1|Ã1)τ
2
1 (s2|ω), if ω ∈ A2, (s1, s2) ∈ S1 × S2.

One can easily verify that
∑

(s1,s2)
τ1((s1, s2)|ω) = 1 for every ω, so τ1 is indeed a strategy.

Let us now prove that τ1 is F1-measurable and µτ1|A = µτ2 |A. If we restrict τ1 to Ai, it is

clearly F1-measurable as τ−i
1 (s−i|Ã−i) is fixed for every ω ∈ Ai and si ∈ Si. Thus, consider

τ1((s1, s2)|ω) where ω ∈ Ã1. All the states in Ã1 ∪ Ã2 are in the same partition element of F1,

so for every (ω1, ω2) ∈ Ã1 × Ã2 we get

τ1((s1, s2)|ω1) = τ 11 (s1|ω1)τ
2
1 (s2|Ã2)

= τ 11 (s1|Ã1)τ
2
1 (s2|Ã2)

= τ 11 (s1|Ã1)τ
2
1 (s2|ω2)

= τ1((s1, s2)|ω2),

and the F1-measurability condition holds. Moreover, for every ωi, ω
′
i ∈ Ai and for every (s1, s2)

such that τ i1(si|ω) > 0 where ω ∈ {ω1, ω
′
1}, it follows that

τ1((s1, s2)|ωi, Ai)

τ1((s1, s2)|ω′
i, Ai)

=
τ i1(si|ωi)

τ i1(si|ω′
i)
,

which implies that conditional on Ai, τ1 yields the same distribution over posteriors profiles as

τ i1, thus mimicking τ2 on every Ai, as needed.
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We can thus finalize the proof using induction on the number of elements in Ω∗. Until now,

we established in Observation 3, Observation 4 and Lemma 3 that, given either |Ω∗| = 1 or

|Ω∗| = 2, then for every F2-measurable strategy τ2|Ω∗ , there exists τ1|Ω∗ such that µτ1|A = µτ2|A
for every A ∈ Ω∗. Assume this holds for |Ω∗| = k ≥ 2, and consider |Ω∗| = k + 1.

Denote the elements of Ω∗ by A1, A2, . . . , Ak, Ak+1. If there exists only one partition element

of F1 that intersects Ak+1 and at least one Ai for i ≤ k, then Lemma 3 holds and the result

follows. Thus, assume there are at least two different partition elements F1(ω) = F1(ω1) and

F1(ω
′) = F1(ω2) of F1 such that ω, ω′ ∈ Ak+1 and ωi ∈ Ai for every i = 1, 2.

The proof now splits into two parts: either A1 and A2 are connected (i.e., there exists a

sequence of partition elements of F1 that sequentially intersect elements in Ω∗ \ Ak+1, starting

with A1 and ending with A2) or A1 and A2 are unconnected. If they are unconnected, we can

apply Lemma 3 for A1 and Ak+1 and then use the induction hypothesis, so assume they are

connected.

Whether Ak+1 is a CKC or a cluster and assuming that A1 and A2 are connected, we argue

that there exists a type-2 irreducible F1-loop that include ω and ω′, implying that Ak+1 is part

of a cluster with other elements in Ω∗. To see this, recall whenever ω and ω′ belong to the same

cluster and F1(ω) = F1(ω
′), then there exists an F1-fully-informative loop that start with ω

and ends with ω′. So consider such a sequence of states lω→ω′ = (ω, . . . , ω′), which would have

been an F1-loop had F1(ω) = F1(ω
′).

Next, fix the entire path of connections of elements in Ω∗ that starts with A1 and ends with

A2. Again, the connection between A1 and A2 implies that there exists a sequence of states

lω1→ω2 = (ω1, . . . , ω2) in Ω∗ \ Ak+1, that would have been an F1-loop had F1(ω1) = F1(ω2).

Hence, consider the sequence of states l = (ω, . . . , ω′, ω2 . . . , ω1) which forms an informative

F1-loop, because F1(ω) ̸= F1(ω
′). Using Proposition 6 and Claim 3, we know that this loop has

a type-2 irreducible F1-sub-loop that contains ω and ω′. Thus, Ak+1 is in the same cluster as

other elements in Ω∗, thus contradicting the assumption that |Ω∗| = k + 1.
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