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1 Introduction

The phrase ‘buy low, sell high’ is presumably the timeless most simplest motto to the world of trading.

Easy to explain and easy to understand, but quite difficult to apply since people are not too eager

to buy a badly performing low-reputation product with the hope it would blossom in due time.

Now consider the portfolio-management industry in which past returns and reputation coincide. Is it

reasonable for an investor to invest through a low-return, potentially losing, investment firm? A recent

study by Cornell et al. (2017) provides some indications by showing that returns oscillate in adjacent

time periods as top-ranked investment firms, in terms of realized returns, become bottom-ranked firms

and vice versa. Similar indications follow from Bessler et al. (2018) portraying limited reversions in

realized returns as time progresses (see, e.g., Figure 2 of the relevant study).

In this paper, we try to explain such phenomena by studying the basic tension between past

performance and incentives. We pursue this goal through a dynamic model in which a strategic

decision maker (DM) repeatedly exerts effort to produce output. On the one hand, the DM is subject

to instantaneous convexly increasing costs that limit his ability to exert effort. On the other hand,

the DM is compensated according to his past and current production levels, so any additional effort

at a given stage becomes beneficial in the stages to follow. The interaction between these two forces

requires the DM to balance current costs with future earnings which ultimately depend on aggregate

recent production, thus endogenously inducing a cyclic performance.

A key attribute of our model is the method by which the DM is compensated. The potential

evaluation methods range from the sole last performance to the DM’s accumulated infinite track

record. We capture these alternatives through two distinct mechanisms, the Transient model and the

Persistent model, that respectively represent short- and long-term averaging.

Under the Transient model, the DM is evaluated and compensated based on his last 2-stage ag-

gregate (or average) output levels. This assessment ensures that any cost cut, at a given stage,

immediately limits the DM’s payoff at the subsequent stage, since one period’s output is next period’s

benchmark position. This intuition establishes our first main result where, even in a deterministic

set-up, the DM’s optimal policy dictates that production oscillates around a certain stable level, while

converging towards it asymptotically.

In the Persistent model, to differ, the DM is rewarded based on a discounted sum of all past

production levels. The main focus of this part is to study how changes in the evaluation process affect

the DM’s incentives. It appears that a DM with an a-priori high evaluation profits from a higher weight

on past performance maintaining his elite status at lower costs, while a low-evaluation DM benefits

from myopic assessments of past production for the opposite reasons. We also prove the existence of
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a basic tension between incentives and past evaluation by showing that optimal incentives are reached

only in case past performance is completely ignored. In addition and similarly to the Transient model,

we show that a high-evaluation position carries similar adverse effects over incentives, whereas the

convergence to a stable state is monotonic rather than cyclic.

1.1 Related literature & main contribution

Our model and analysis combine several well-documented models and policies in the economic world.

The oscillatory optimal strategy carries some resemblance to the optimal (S,s)-policies in inventory

problems, where an agent allows his inventory to fall until is reaches a low level s, only to be imminently

increased to a high level S. Such policies were vastly studied in the context of the Pricing Problem

(price adjustments and inflation), the Technology-Update Problem, and the Capital Stock Adjustment

Problem.1 In the delegated portfolio-manager context, the rational model of Berk and Green (2004)

contributes one of the key ingredients for non-persistent performance. Berk and Green propose a non-

strategic model where non-persistence and related phenomenons are attributed to decreasing returns

to scale, as firms that recently outperformed suffer from the positive inflow of funds. Similar non-

persistence arises in the seminal work of Holmstrom (1999), where the market’s inference about ability

is a random walk with a declining variance.

In view of previous studies, we can underline the first contribution of the current work: accom-

modating for endogenous cyclic performance in a general framework. Our results indicate that a

cyclic performance, rather than non-persistence, could be attributed to incentives whenever payoffs

depend on the DM’s past performance. Such oscillations were recently observed in the empirical

studies of Cornell et al. (2017) and Bessler et al. (2018), both studying the portfolio management

industry. These studies show that recent performance, namely the short-term moving-average of the

DM’s yields, is negatively correlated with forthcoming ones. Interestingly, their evaluation methods

and results are in-line with our theoretical predictions.2 Additionally, our findings complement the

recent study by Ishiguro (2022), which identifies endogenous and persistent management cycles under

a different dynamic setting.

The second key contribution of our work relates to a more theoretical strand in the literature,

1See, e.g., Arrow et al. (1951); Dvoretzky et al. (1952, 1953); Bellman et al. (1955); Bailey (1956); Arrow et al. (1958);

Scarf (1959); Barro (1972); Sheshinski and Weiss (1977), and Sheshinski and Weiss (1993) for a general survey.
2The public and academic debate over the performance of fund managers is rather extensive. On the one hand,

papers such as Grinblatt and Titman (1992), Elton et al. (1993), Hendricks et al. (1993), Goetzmann and Ibbotson

(1994), Brown and Goetzmann (1995), Carhart (1997), Bollen and Busse (2005), and Busse et al. (2010), indicate that

either long- or short-term performance persist, while many others, such as Goyal and Wahal (2008) and Barras et al.

(2010), claim otherwise.

2



regarding the problem of global stability in discounted problems.3 Our contribution to this line of

research follows from the identification of the process and method by which the production converges

to a stable state. That is, we do not limit ourselves to proving the existence of a unique optimal

strategy and state; rather we show how they systematically converge due to the evaluation process.

In this respect our results go beyond the fundamental work of Blackwell (1965), which guarantees

convergence to an optimal policy by showing that the optimal policy itself has a fixed point. We go

further and prove that the same optimal policy induces a cyclic convergence towards that fixed point.

In other words, we prove the existence of a fixed point within a fixed point, and show how the process

endogenously converges to both.

Another contribution is attributed to the inclusion of information frictions between the DM and

his evaluator. In our model, the evaluation process follows simple heuristics that dictate the DM’s

payoff. There is thus no need for a common prior, Bayesian updating, or even common knowledge of

distributions over abilities. The stochastic elements in our model need not be normally distributed,

i.i.d., or even ergodic. This generality opens the door to a broad analysis of the problem from a

designer’s viewpoint.

1.2 Structure of the paper

The paper is organized as follows. Section 2 depicts the Transient model and is divided into two parts,

one is devoted to the deterministic case and the other to the stochastic one. In Section 3 we revert to

the Persistent model, and in Section 4 we focus on the way changes in the evaluation process affect

incentives. Concluding remarks and comments are given in Section 5.

2 The Transient model

Consider a decision maker (DM) in an infinitely repeated set-up. At every stage, the DM strategically

exerts efforts that translate into outputs, while his per-period payoff depends on either the aggregate,

or the average of his last and current output levels. The DM’s main goal is to maximize the infinite

discounted-sum of the effort-deducted payoffs.

Formally, let E “ remin, emaxs Ď R` be a non-empty compact interval denoting the DM’s single-

period effort choice. For every effort level e P E, the single-stage output Qpeq is determined by the

output function Q : E Ñ R`. The DM’s reward is defined by the reward function R : QpEq Ñ R`.

Specifically, the last and current output levels are reduced to a single factor q, referred to as past

3See Scheinkman (1976); Rockafellar (1976); Cass and Shell (1976); Brock and Scheinkman (1976), among many

others.
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performance such that the DM receives the single-stage reward of Rpqq. Due to diminishing marginal

returns, both R and Q are assumed to be strictly increasing, strictly concave, and continuously differ-

entiable functions.

The problem begins at stage t “ 1 with an initial output of Q0 “ Qpe0q.
4 The DM chooses an effort

e1 to generate an output of Q1 “ Qpe1q. Once Q0 and Q1 are realized, the DM is rewarded a payoff

of R pQ0 `Q1q. Continuing inductively, at every stage t ą 1, and given past output Q0, Q1, . . . , Qt´1

where Qt´1 “ Qpet´1q, the DM exerts effort et, which generates an output of Qt “ Qpetq, and provides

a reward of R pQt´1 `Qtq. The DM’s profit in the repeated process is given by the β-discounted sum

πpeq “
8
ÿ

t“1

βt´1r´et `RpQt´1 `Qtqs, (1)

where e “ pe1, e2, . . . q is the DM’s infinite-horizon realized actions and β P p0, 1q.

Before we proceed, let us comment on two assumptions concerning the output function and stage

payoffs. First, the reward function’s concavity assumption could be weakened as long as the compo-

sition R ˝Q remains concave. Second, an equivalent way to present the stage payoff is by letting the

DM directly choose the output level Qt, so that ´et ` RpQt´1 ` Qtq “ ´Q
´1pQtq ` RpQt´1 ` Qtq.

Though the two representations are completely equivalent, in the notations on the right the DM di-

rectly chooses output, which translates to an effective cost through a standard increasing and convex

cost function Q´1 : R` Ñ E. Hence, the output function’s concavity is basically an alternative

manifestation of convexly increasing costs.

A strategy σ is a function from all past realized outputs (histories)
Ť

tPNQpEq
t to the effort set

E. A stationary strategy σ is a function from the set QpEq of single-period output to the effort set,

or equivalently, a function from the effort set to itself. In general, the process summarized in Eq. (1)

is an MDP, where the state variables are either E, or equivalently, QpEq.5 So, a stationary strategy

is a time-invariant one-stage strategy that is played repeatedly throughout the process, and depends

solely on the current state variable rather than on the entire history.

Given any strategy σ and an initial output level Q0 “ Qpe0q, derived from an initial effort level

e0, denote the DM’s payoff by πpe0|σq, where all effort levels tetutPN are determined according to σ.

A strategy is considered optimal if it solves the optimization problem

πpe0|σq “ sup
σ

8
ÿ

t“1

βt´1r´σt `RpQpσt´1q `Qpσtqqs,

4The initial condition could be exogenously fixed or randomly chosen. In any case, it will become redundant under

the generalization to a stochastic set-up.
5The equivalence follows from the fact that the output function is continuous and strictly increasing and the effort

set is convex, thus there exists a one-to-one mapping between the two sets, E and QpEq.
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where σ1 “ σpQ0q, and σk “ σpQ0, Qpσ1q, . . . , Qpσk´1qq. That is, a strategy is optimal if it produces

the maximal payoff, denoted π̂pe0q, given an initial effort level e0.

The interior-solution property. To simplify the analysis, we require an additional technical

assumption stating the the optimal solution is not trivial. Namely, we fix the parameters such that

the extreme points temin, emaxu cannot be the DM’s optimal action. One can clearly weaken this

assumption by restricting the initial condition to a subset which ensures the end-point solutions are

suboptimal.

Remark 1. In the Transient model we assume that the reward function is deterministic. To differ, in

typical principal-agent models, the stage-output Qt depends stochastically on the chosen effort level et,

i.e., Qt „ P p¨|etq for some probability measure P . The stochastic framework described in Section 2.3

accounts for this possibility.

2.1 Economic applications

Though we use a generic decision-problem terminology, our model applies to several economic scenar-

ios. For example, consider the portfolio-management industry. Any investment firm typically exerts

per-period “effort”, either through the accumulation of information as in Stoughton (1993) and Ad-

mati and Pfleiderer (1997) or through managerial replacements as in Lynch and Musto (2003) and

Dangl et al. (2008). This single-stage effort of et translates into the return Qpetq.

Now investors typically cannot a priori determine the ability of a fund manager or an investment

firm. For that purpose, the market observes past returns and averages recent performance to determine

expected ability.6 The dependence on recent past performance is crucial in this context, since it enables

a more accurate evaluation of one’s abilities. For tractability, we assume that investors observe the

last two stages average performance 1
2pQt´1`Qtq and allocate funds accordingly. Note that the use of

running averages implies that current and recent performance are perfect substitutes. Due to assets-

under-management fees, the recent average return becomes lucrative as funds flow towards the firm

in stages to follow. The latter interaction is captured through the reward function RpQt´1 ` Qtq.

Interestingly, recent empirical studies (see Cornell et al. (2017) and Figure 2 of Bessler et al. (2018))

portrayed a limited cyclic performance at the firm level, whenever firms were evaluated through a

moving average of recent performance.

Another application of our model is evidenced in any trading process involving credit, such

that payments are distributed along sequential time periods. A firm constantly produces output

6For example, the New York Times regularly publishes the total returns of various funds according to the previous

year, three years, and five years.
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pQ1, Q2, . . . q, but payments are partitioned over two adjacent stages, namely the payoff at stage t is

R
`

1
2pQt´1 `Qtq

˘

.7 Thus, the single-stage payoff depends partially on recent past performance due

to the postponed payments and depends partially on current performance, so the services and costs

are instantaneous whereas payments are postponed. Given such interpretation, past performance is

translated into direct monetary transfers, and the firm would strive to balance its recent average

production, by “smoothing” its income and production.

A recent study by Chen et al. (2016) provides evidence of negative autocorrelation in decision

making in the context of asylum judges, loan officers, and baseball umpires. Namely, they find

significant negative autocorrelation under which loan officers are less likely to approve a loan if they

approved the previous loan, and vice versa. Though their primary explanation is the gambler’s fallacy,

one can also think of loan officers as agents that are compensated based on their aggregate performance.

Thus, it becomes optimal for them to smooth their performance over time such that a substantial

extraction of effort, which leads to credit denial, is followed by an under-investment of effort and a

loan approval. This becomes even more evident given our analysis of the stochastic case in Section 2.3

below, which accounts for exogenous variations in output, and the inverted strategic reaction of the

DM towards them.

One could also adapt our model to a semi optimal-growth model with post-generational transfers,

as a portion of one’s wealth is transferred to subsequent generations. By and large, any strategic inter-

action that combines the two previously mentioned key components of marginally decreasing output

and history-based payoffs will be closely related to our framework and, therefore, to our conclusions

regarding cyclic performance to incentives.

2.2 Main result - the deterministic case

The payoff function given in Eq. (1) presents the basic tension under which the DM operates. Over

(or under) investing in effort at one stage, generates a balancing counter-reaction at the subsequent

stage to invest less (or more) effort. This balancing effect motivates Theorem 1 which follows.

Theorem 1 states that there exists an stationary effort level e˚, such that the DM balances his

performance relative to e˚ at every two adjacent stages. Namely, in case the current evaluation level

is higher (or lower) than the absorbing level, the DM will invest less (or more) effort relative to e˚, to

balance the performance at the subsequent stage. These alternating effort levels continue to fluctuate

around the stationary level, while converging towards it asymptotically. By their technical nature, we

defer all proofs to the appendix.

7We simplify the exposition by considering an evenly partitioned payment over two stages.
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Theorem 1. There exists a unique, stationary and continuous optimal-strategy σ : E Ñ E. Given σ,

the payoff function π̂pe0q “ πpe0|σq is a strictly concave, and continuously increasing function of e0.

In addition, if the interior-solution property holds, then:

• the optimal strategy σ is strictly decreasing with a single fixed point e˚ P pemin, emaxq;

• the sequences
`

σ2npe0q
˘

nPN and
`

σ2n`1pe0q
˘

nPN monotonically converge to e˚;

• the fixed point e˚ is bounded between σnpe0q and σn`1pe0q for every n P N.

Though the proof is given in Appendix A, we wish to provide a brief description of its main

elements. The first part of the proof follows standard dynamic-optimization techniques, based closely

on the results in Chapter 4 of Stokey et al. (1989). We use their analysis, which originates from

Bellman’s principle of optimality and Blackwell’s Contraction Mapping Theorem, to establish that a

unique, stationary, and continuous optimal-strategy exists, and that the payoff function is a strictly

concave, continuously increasing function, where the concavity follows from the concavity of RpQp¨qq.

The second, and more original, part of the proof relates to our key insight concerning the cyclic

performance. It is based on the idea that the optimal strategy σ is a strictly decreasing function

from E to itself, hence it maintains a fixed point e˚. We establish this monotonicity by taking the

standard Bellman equation and differentiating both sides w.r.t. the optimal action, given e0. Then,

we perform a comparative statics by studying an incremental increase in e0 to show that σ is a

strictly decreasing function (this relies on the concavity of all the aforementioned functions). Once

monotinicity is established, the fixed point e˚ follows directly, and every initial position e0 ă e˚ must

be accompanied with an optimal action σpe0q ą e˚. The action σpe0q, which exceeds e˚, is also the

initial condition of the subsequent stage, thus generating an oscillating performance.

The fact that the fixed point e˚ is bounded between any two subsequent effort levels suggests that

the DM’s performance is of a cyclic nature. Assume, e.g., that σkpe0q ą σk`1pe0q for some given stage

k. It must be the case that σkpe0q ą e˚ ą σk`1pe0q, so in order to maintain the same e˚-interior-

condition between stages k` 1 and k` 2, it follows that σk`2pe0q ą e˚ ą σk`1pe0q. This implies that

output oscillates around e˚ throughout the process.

In other words, Theorem 1 suggests that a cyclic performance, monotonically and systematically

converging to equilibrium, is natural when dealing with a DM concerned with current and recent

performance. This outcome captures two important aspects of the current work. First, depicting a

specific path and method of converging to a stable state in a dynamic-optimization problem. Second,

linking aggregated performance, and therefore incentives, to a cyclic-performance phenomenon. This

result somewhat resembles the outcome in Holmstrom (1999), where the market’s evaluation of an
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agent’s ability is a random walk with decreasing volatility. However, note that we reached this con-

clusion in a deterministic framework and, in the following section, we extend it to a general Markov

process.

2.3 Main result - the stochastic case

The first extension of the Transient model concerns the introduction of randomness to the output

function. The randomness that we impose need not be i.i.d or even ergodic. Rather, we assume that

the output function depends on a randomly chosen state of the world, dictated by a Markov process,

along with prior dependence on the DM’s strategic effort. Though its general nature, this extension

does not impair previous results.

Formally, consider a finite8 set Ω of states and denote by P “ pPijq1ďi,jď|Ω| the transition matrix

where Pij is the probability of moving from state i to state j in a single time period. Given the states

and transition function, consider a generalization of the output function such that Q : Ω ˆ E Ñ R`
depends on the realized state ω P Ω and on the DM’s effort. We assume that the output function

maintains its basic properties independently of the realized state. Namely, for every ω P Ω, the output

function’s ω-section Qω : E Ñ R` is a strictly increasing, strictly concave, continuously differentiable

function. Denote by S the convex hull of the compact set QpΩ, Eq of all possible realized outputs.

The stochastic decision problem evolves similarly to the deterministic one. At stage t “ 1, with an

initial state ω0 P Ω and an initial output of Q0, the DM chooses an effort level e1 P E. Next, a state ω1

is realized according to P and ω0, and the single-stage realized-output is Q1 “ Qpω1, e1q. Continuing

inductively, at every stage t ą 1 and given a history ht´1 “ pω0, Q0, ω1, Q1, . . . , ωt´1, Qt´1q of past

realized outputs and states, the DM chooses an effort et. A state ωt is realized according to P and

ωt´1, and the single-stage output is Qpωt, etq. Therefore, a strategy σ applied by the DM is a function

from the set
Ť

tPNpΩˆ Sq
t of all finite histories to E, such that σpht´1q “ et is the strategy’s realized

action at stage t.9 As before, a stationary strategy is a time-invariant one-stage strategy that is played

repeatedly throughout the process, and maps every state variable (i.e., every pωt, Qtq in this case) to

an effort level et in every stage t. 10

8In general, the use of a finite state space could be avoided by taking any compact Borel set in R. In that case, the

transition function must hold the Feller property, roughly stating that every bounded continuous function is mapped,

under the expectation operator and given the transition function, to a bounded continuous function.
9Since Q and R are continuous, E is compact, and Ω is finite, measurability requirements are met.

10Following Remark 1, one can extend the given stochastic framework so that the state of the world is a pair pω, ξq,

chosen from a product space Ω ˆ Ξ. While ω represents the random state of the economy, ξ is responsible for the

stochastic aspect of the realized output (once ω and the effort level are determined). At stage t the pair pωt, ξtq is drawn

according to P p¨|ωt´1q, so that the output is stochastically determined by et and ωt: Qt „ Qp¨|ωt, etq. In other words,

as the stochastic model dictates, once pωt, ξtq is realized, Qt is uniquely determined by the effort level et. Assuming that
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Given a strategy σ and initial conditions pω0, Q0q, the DM’s expected β-discounted payoff is

πpω0, Q0|σq “ Eσ,ω0

«

8
ÿ

t“1

βt´1p´et `RpQt´1 `Qtqq

ff

, (2)

where Eσ,ω0r¨s is the expectation operator with respect to the probability measure induced by the

transition probabilities P , the initial state ω0, and the strategy σ. Note that the strategy is a random

variable since it depends on realized states. Thus, the expectation operator also relates to the strategy-

induced effort levels throughout the stages.

By the randomness of the process, the DM’s realized output might not accurately follow the same

cyclic performance as in Theorem 1. However, in Theorem 2 which follows, we prove that current

output decreases (in expectation) with respect to previously realized ones. We also show that the

optimal strategy is a strictly decreasing function of a recently realized output. Thus, the oscillating

process presented in the deterministic case remains valid.

Theorem 2. There exists a unique, stationary and continuous optimal-strategy σ : ΩˆS Ñ E. Given

σ and ω0, the payoff function π̂pω0, Q0q “ πpω0, Q0|σq is a strictly concave, continuously increasing

function of Q0. In addition, if the interior-solution property holds, then Eσ,ωt´1rQt|Qt´1s is a strictly

decreasing function of Qt´1, and for every state ω visited infinitely many times, there exists an output

level qω such that, w.p. 1, output oscillates around qω infinitely many times.

The construction of the proof of Theorem 2, given in Appendix B, follows similar arguments as

the proof of Theorem 1. We adapt the results of Chapter 9 of Stokey et al. (1989) to establish a

unique, stationary, and continuous optimal strategy, and a strictly concave, increasing payoff function.

Next, we differentiate the Bellman equation (as in the proof of Theorem 1), but with the expectation

operator, to perform comparative statics and show that σpω0, Q0q is decreasing in Q0. We then define

the function ψωpqq “ Eω rQpω̃, σpω, qqqs, where ω is fixed and ω̃ is drawn according to P , and use the

monotonicity of σ to establish a fixed point qω for ψωpqq. This fixed point, along with the monotonicity

of σ, yields the oscillating performance stated in the theorem.

One way to compare the monotonicity result of Theorem 2 to the one given in Theorem 1, is by

taking a mass-point measure over Ω. In such a case, the probability space becomes trivial and the term

Eσ,ωt´1rQt|Qt´1s translates to Qpσt´1q, where σt´1 “ σpQt´1q and the state Qt´1 is fixed. Therefore,

the result which states that Eσ,ωt´1rQt|Qt´1s is strictly decreasing in Qt´1 implies that σ is strictly

decreasing, taking into account the fact that Q is an increasing function.

Qωt,ξt maintain its key properties w.r.t. et (i.e., a strictly increasing, strictly concave, and continuously differentiable

function), then Theorem 2 below follows accordingly.
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An immediate question that originates from Theorem 2 relates to the role of the DM’s strategy

in inducing oscillation, versus the natural oscillations that occur due to randomness. In the proof,

given in Appendix B, we not only show that infinitely many oscillations occur, but also prove that

these oscillations occur infinitely many times between extreme output levels, related to extreme states.

These levels are not necessarily close. In this sense, the strategic reaction of the DM intensifies the

oscillatory trends, even under the mean-reversion phenomenon. Therefore, Theorem 2 joins Theorem

1 to support the results of various empirical studies suggesting that DMs’ performance patter tends

to be cyclic. Our results and model explain such occurrences through a straightforward economic

reasoning, which goes beyond the probabilistic properties. Namely, when DMs’ payoffs are history

dependent, and production is increasingly costly, DMs’ strategies level their performance accordingly.

Note that the monotonicity result in the last statement of Theorem 2 relates strictly to previously

realized output, and not to the different states. Therefore, we fix the state variable ωt´1, and derive

monotonicity through changes in the realized output Rt´1. Without further assumptions over transi-

tions and states, the realized output in adjacent stages might actually increase, e.g., in case the fixed

state variable is significantly worse (in terms of production) than all other states.

2.3.1 Accommodating for competition

The stochastic model analysed in Theorem 2 is more than just a technical extension of the deter-

ministic set-up. In fact, it could accommodate several possible interpretations, specifically relating

to competition between various DMs as in Lagziel and Lehrer (2018), where the interaction between

DMs is mediated explicitly by performance-based relative compensation.

In a general strategic set-up, each DM should respond not only to the current state but also to other

players’ strategies. In the current work, an implicit interaction between DMs could occur through the

reward function: the DM’s performance can be interpreted as relative to, e.g., other DMs or some

exogenous benchmark. One could also attribute the proposed randomness to fluctuations in demand,

assuming that the DM represents a price-taker firm interacting with a general set of consumers.

Our approach has both an advantage and a disadvantage. On one hand, our analysis does not

require that a DM would know the strategies employed by all his rivals - the aggregate effect of all other

players is encapsulated in an exogenous stochastic process which determines (along with his effort)

the DM’s payoff. On the other hand, our model does not deal with situations where the DM is truly

strategic and incorporates other players’ behaviour in his decisions. Moreover, the DM’s payoff in our

model is independent of other opponents’ performance. Thus, a full analysis of a general framework

with multiple players is left for future research.
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3 The Persistent model

In this section we extend the preceding analysis by conditioning the DM’s compensation on a longer

history path. Specifically, we study a process in which the reward function depends on a discounted

sum of all past output levels. The purpose of this adjustment is to address the decision problem

through a wider scope. Namely, we wish to study how changes in the evaluation process affect, in

the long run, the DM’s realized production and payoff. Therefore, instead of focusing on short-term

effects as in Section 2, we now turn to inspect long-term effects due to adjustments in the evaluation

mechanism.

Formally, fix a discount factor λ P p0, 1q and consider an optimization problem where the DM’s

performance is evaluated by a λ-discounted sum of past output. That is, we track the following

optimization problem

π̂pQ0q “ sup
σ

8
ÿ

t“1

βt´1r´σt `Rpp1´ λqzQt´1 ` λQpσtqqs,

where xQ0 “ Q0, xQk “ p1 ´ λqzQk´1 ` λQpσkq for every k, and σk “ σpQ0, Qpσ1q, . . . , Qpσk´1qq. In

words, this optimization problem is similar to the original Transient model, apart from the exchange

of the two-stage evaluation Qt´1`Qt with the discounted sum p1´λqtQ0`λ
řt
n“1p1´λq

t´nQn. We

refer to this problem as the Persistent model.

The evolution of the Persistent set-up is similar to that of the transient one. At the beginning of

every stage t, and given an evaluation of zQt´1, the DM exerts effort et to generate an output of Qpetq.

The DM’s updated evaluation is set to xQt “ p1 ´ λqzQt´1 ` λQpetq and the DM collects a reward of

RpxQtq. The process continues indefinitely.

3.0.1 Economic applications

A straightforward application of the persistent model relates to an R&D investment problem, where a

firm decides how much to invest in R&D at every time period. The decision and costs are instantaneous,

whereas the payoff is accumulated and spread throughout the stages. Any breakthrough, either a

technological advantage or superior marketing abilities, would give the firm a long-term edge over the

competition; an advantage which depreciates over time. In this context, an empirical study by Artés

(2009), which focuses on R&D decisions in Spanish firms, finds significant persistence in firms’ decision

to invest in R&D over time. This is consistent with our prediction of monotone convergence in the

Persistent model, compared to the oscillating convergence in the Transitory model.

Another application is attributed to a dynamic advertising problem where performance is accu-

mulated in the process of building a franchise. A firm typically invests in advertising and its payoff
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depends on the accumulated investment with some form of depreciation.

3.1 Main result - the deterministic case

A comparison of Section 2’s results with the following Theorem 3 will certify that many previous results

hold under the updated problem, while others change completely. Starting with the similarities, we

show that there exists a unique, stationary and continuous optimal-strategy σ : QpEq Ñ E, such that

the optimal payoff function is a strictly concave, continuously increasing function.11 In addition, we

again prove that the optimal strategy is strictly decreasing, thus implying that high past evaluation

carries the same adverse effect over incentives. On the other hand, the two models differ in the

paths by which the systems converge to a stable production level. In particular, the Persistent model

generates a monotonic convergence, rather than an oscillating one. We broadly relate to this aspect

after formally presenting the results of Theorem 3. The proof is given in Appendix C.

Theorem 3. In the Persistent model, there exists a unique, stationary, and continuous optimal-

strategy σ : QpEq Ñ E. Given the optimal strategy, the payoff function πpQ0|σq is a strictly concave,

continuously increasing function of Q0. In addition, if the interior-solution property holds, then the

function Qpσq : QpEq Ñ QpEq is strictly decreasing with a single, interior, fixed point Q˚ P QpEq.

Moreover, the sequence pxQtqtPN of realized discounted performance, generated by σ and Q0, monoton-

ically converges to Q˚.

The proof of Theorem 3, given in Appendix 3 follows the same steps as the proof of Theorem 1,

yet reaches a somewhat different result. Namely, there are two important aspects that arise from

the comparison of Theorem 3 with Theorem 1. First, the monotonic convergence of the discounted

performance towards Q˚, and second, the optimal strategy’s monotonicity. Let us provide a short

discussion regarding these aspects.

To understand the differences between the monotonic convergence in the Persistent model (Theo-

rem 3) and the oscillating convergence in the Transient model (Theorem 1), one needs to think of the

different dynamics concerning the state variable in each set-up. Assume, e.g., that the state variable

in stage t is below the stable (fixed-point) level Q˚. Then, in both models, the DM optimally gen-

erates an output Qt`1 which exceeds Q˚. That is, the optimal strategy in both models dictates that

Qt`1 ą Q˚; a similarity between the two models and results.

11As in the Transient model, the one-to-one mapping between E and QpEq enables us to consider either one of the

two sets as the state variables. Namely, for every state q, given in terms of the discounted output level, there exists a

unique effort level e such that Qpeq “ q. To simplify the notation in the current analysis, we choose to use QpEq as state

variables, with no loss of generality.
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Let us now understand how this affects the state variable in subsequent stages. In the Transient

model, which is Markovian, the fact that Qt`1 ą Q˚ implies that state variable in stage t` 1 is above

the fixed-point level Q˚, thus generating a cyclic performance along the stages. In the Persistent

model, however, this is not the case because the state variable in stage t` 1 is a discounted sum of all

past outputs. So the fact that Qt`1 ą Q˚ does not imply that the state variable in stage t`1 is above

Q˚. The state variable zQt`1 in stage t ` 1 would exceed Q˚ only if the output Qt`1 is sufficiently

high. In other words, moving from an initial state of xQt ă Q˚ to zQt`1 ą Q˚ is much more costly

when the state variable in stage t`1 is a convex combination of current and past outputs, rather than

just the last one. So although the DM still strives to balance his current state and subsequent output

to reach the stable effort level Q˚, only in the Persistent model it is feasible, cheaper, and therefore

more efficient, to monotonically tend towards the stable level, thus discounting costs by exerting more

effort in the future.

Remark 2. Similarly to Theorem 2, one can extend the persistent model to a stochastic environment

and prove that the results of Theorem 3 still hold, in expectation, under the stochastic extension. We

omit this generalization due to its technical nature.

4 Long- and short-term memory

In view of the two proposed evaluation mechanisms, one of the most interesting (and potentially most

policy related) question is how much weight should be put on past performance. In this section we

study how changes in the evaluation process affect the DM’s optimal payoff, as well as the realized

output.

To simplify the analysis, we consider the Persistent model, where the evaluation at stage t is given

by xQt “ p1´ λqzQt´1 ` λQpetq. The advantage of this set-up is its ability to summarize the trade-off

between past and current performance through a single factor, λ. Namely, in Theorem 3 we showed

that the DM’s performance converges to a stable level Q˚. Now we can examine how changes in the

evaluation process through λ, affect the long term output through the steady level Q˚. For example,

if λ “ 0, there is no value to future performance, and the steady level becomes Q0 since the DM has

no incentive to exert effort. That is, the system remains fixed to the initial condition and the DM

produces the minimal feasible effort level. However, if λ “ 1, then past performance is not taken

into account during the evaluation process, and the DM repeatedly solves the optimization problem

maxePEt´e`RpQpeqqu.

Before formally stating the results, a few preliminary explanations and notations are needed. For

every parameter λ P r0, 1s, let Q˚λ be the limit production level in the λ-discounted model under the
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optimal behavior described in Theorem 3. We assume that the DM acts optimally, using the optimal

stationary strategy given λ, and production converges to Q˚λ. In addition, denote the DM’s optimal

payoff by π̂λpQ0q, where Q0 is the initial evaluation.

The first result of Theorem 4 relates to the monotonicity of Q˚λ with respect to λ. We prove that

the optimal strategy’s stable output level, towards which production converges, is strictly increasing

in λ. To put it another way, production increases as the evaluation becomes myopic of past output

and the assessment depends more heavily on current performance.

On the one hand, from a strategic point of view this result is quite intuitive. When agents cannot

rely on past performance, they constantly need to re-justify their abilities at every stage to come,

exerting more effort in the process. The accumulated performance generates a certain inheritance

effect where the ability to transfer value from one stage to another leads to less exertion of effort

throughout the stages.

On the other hand, the same result also hints at an important economic observation. It implies

that the first-best solution, where the DM exerts the maximal rational effort, is achievable only if the

DM does not retain any past dependence. That is, the only possibility of exerting the optimal effort

from the DM is by ignoring past results completely, at any given stage. This may pose a problem

in various scenarios. For example, when such a process comes into play, the ability to screen low-

level DMs is eliminated. Therefore, whenever uncertainty emerges between several DMs and their

differential abilities (as in Holmstrom (1999)), the market needs to balance between the screening

process (putting more weight on past performance) and optimal incentives (putting more weight on

current ones).

The second part of Theorem 4 concerns the DM’s payoff as a function of λ and Q0. These results

are best exemplified in Figure 1, showing inverse effects between the discount factor and the initial

condition. Namely, fix a discount factor λ0 and the appropriate limit production level Q˚λ0 . Let us

assume that the the initial output level Q0 equals the limit level Q˚λ0 , so exerting the same effort and

output levels throughout the process is optimal. Now, ceteris paribus, consider a lower λ ă λ0 so

that more weight is attributed to past performance. The DM evidently benefits from this adjustment

since he can free-ride the initial condition, and reduce his effort levels. This suggests that the (limit)

production level under λ is lower, while the DM’s payoff increases! To see this more clearly, assume

first that the DM does not adapt to the reduced discount factor λ, but maintains the optimal strategy

σλ0 . Clearly, the DM’s payoff does not change since the initial condition and output levels remain

the same. However, this is not the DM’s optimal payoff since he is exercising a sub-optimal strategy

σλ0 , whereas the discount factor is λ ă λ0. Once the DM reverts to σλ, the expected payoff increases

accordingly, while output levels decrease.
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π̂λ2pQ
˚
λ2
q

π̂λ1pQ
˚
λ1
q

Q˚λ2 Q˚λ1

Q

π̂λpQq

Figure 1: DM’s expected payoff as a function of Q0 and λ, where λ1 ą λ2. Optimal-payoff functions

are concave and continuously increasing in the initial position.

This reasoning yields a somewhat surprising outcome. It shows that any evaluation factor other

than λ is preferable to the DM, given an initial position of Q0 “ Q˚λ. That is, the evaluation factor

that generates the lowest expected payoff, given some initial position, is the one that imposes the same

steady level. As it appears, once production converges to a stable level, the DM can only profit from

either an increased or a decreased evaluation factor, though the two generate inverse incentives.

Theorem 4. Given the interior-solution property, the steady output level Q˚λ strictly increases as a

function of λ. Moreover, for every λ1 ‰ λ2, and given an initial position of Q˚λ1, the DM’s payoff is

higher under the λ2-evaluation rather than under the λ1-evaluation, i.e., π̂λ2
`

Q˚λ1
˘

ą π̂λ1
`

Q˚λ1
˘

. In

addition, If λ1 ą λ2, then

• π̂λ2pQq ą π̂λ1pQq, for every Q ě Q˚λ1;

• π̂λ2pQq ă π̂λ1pQq, for every Q ď Q˚λ2;

• π̂1λ2pQq ą π̂1λ1pQq, for every Q ď Q˚λ1.

Theorem 4 is best understood through Figure 1. First, if recent performance is weighted more

heavily (i.e., λ1 ą λ2), then incentives are sharpened such that: (i) output converges to a higher

level of Q˚λ1 ą Q˚λ2 ; and (ii) dependence on the initial condition weakens, and the derivative w.r.t.

Q0 decreases. Next, in case the initial position Q0 is low, the DM would prefer a lower evaluation

of past production (blue line), quickly neglecting past performance, rather than a high evaluation of

past production (red line). The opposite statement holds whenever the initial position is high.
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The proof of Theorem 4, given in Appendix D, is based on Bellman’s principle of optimality and

the Contraction Mapping Theorem. We first define the standard contracting operator from the set of

bounded functions to itself, according to the Bellman equation from Theorem 3. We then consider

a closed set of bounded functions that maintain a certain property, e.g., one of the properties given

in Theorem 3, and prove that the new operator-induced function preserves this property. Following

the Contraction Mapping Theorem, we establish that the payoff function also maintains the given

property, as needed.

5 Concluding remarks

In this paper we present a dynamic decision problem where the dependency of the compensation scheme

over past performance produces an oscillatory production pattern. Though our setting is robust to

the governing output-generating process, and though it underlines probabilistic environment, there

are several important extensions to follow. First, to capture the oscillating performance in a general

dynamic market one could accommodate for the interaction between multiple players. In light of

the theoretical complexity behind such a model (as the dynamic interaction between DMs induces a

stochastic game), the implementation of numerical analysis is imminent. Second, an extension of our

model that associates incentives with screening, while taking into account the uncertainty regarding

the agent’s subjective abilities, is evident. We believe that the main obstacle lays in capturing the

same phenomenon in a simple, yet general, static model. Lastly, a comprehensive analysis of our model

while taking into account a wider range of evaluation processes, could produce important insights into

the oscillating-performance problem.
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A The deterministic case - analysis and proofs

Eq. (1) produces the following sequential optimization problem

π̂pe0q “ sup
ePE8

8
ÿ

t“1

βt´1r´et `RpQt´1 `Qtqs, (3)

where π̂ is an optimal payoff given initial effort level e0 P E. We follow the standard analysis of the

corresponding Bellman equation,

π̂pe0q “ sup
ePE

r´e`RpQ0 `Qpeqq ` βπ̂peqs . (4)

where the existence of the value function π̂ follows from the properties of E (non-empty, compact,

and convex), and from the continuity of Q and R, which suggests that the single-period payoffs are

bounded.

At this point we follow the results given in Chapter 4 of Stokey et al. (1989). To facilitate readability

and to not repeat similar arguments in subsequent proofs of Theorems 2 and 3, we elaborate in the

current proof regarding our use of the aforementioned results. First, in terms of notations, the set of

endogenous state variables X and the action set Y and ΓpXq, in Stokey et al. (1989), translate to our

action set E. Second, the single-stage action (effort) set E is non-empty, compact, and convex, and the

corresponding payoff (output) functions are continuous, therefore the single-stage payoffs are bounded.

This ensures the existence of the value function π̂ in Eq. (4). To formally support this claim, we refer

to Chapter 4 of Stokey et al. (1989), specifically to Assumptions 4.1 ´ 4.4 and Theorems12 SLP-4.3,

SLP-4.4, and SLP-4.5. Their analysis is based on considering the (more basic) n-stage discounted

problem, for which the solution evidently exists, and then taking the limit of the value function as n

tends to infinity.

Define the correspondence σ : E Ñ 2E such that

σpe0q “ te P E | π̂pe0q “ F pe0, eq ` βπ̂pequ,

where F pe0, eq “ ´e`RpQpe0q`Qpeqq for every e0 P E. The function F follows the notation of Chapter

4, Section 4.1, in Stokey et al. (1989), where F is the single-stage payoff given an initial state of e0 and

an action e. Moreover, the correspondence σpe0q is defined according to the equivalent (optimal) policy

correspondence Gpxq of Stokey et al. (1989) (see Eq.p2q in p.78). Since all functions are bounded and

continuous, σ is well defined. Moreover, Theorem SLP-4.6 proves that σ is a compact-valued, upper

hemi-continuous correspondence, that generates the DM’s optimal strategy (the proof of Theorem 4.6

12Hereafter, we refer to Theorems 4.2´ 4.11 in p.71´ 85 of Stokey et al. (1989) as SLP-4.XX.
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is based on Blackwell’s sufficient condition for a contraction mapping, and the Contraction Mapping

Theorem). The functions Q and R are monotonic and concave, so F pe0, eq is concave w.r.t. e0 and e,

and strictly concave w.r.t. e0, thus the conditions (Assumptions 4.3 ´ 4.4 and 4.7 ´ 4.8) to SLP-4.8

are met, and σ is a single-valued continuous function according to this theorem. In addition, the fact

that F is strictly increasing in e0 implies that π̂ is strictly increasing as well (see SLP-4.7).

Proving that π̂ is differentiable (using SLP-4.11) requires σpEq to be the interior points of E,

which holds by the interior-solution property. Hence, π̂ is continuously differentiable and we can use

the envelope theorem to differentiate Eq. (4) w.r.t. e and evaluate the derivative in σpe0q to get

R1pQpe0q `Qpσpe0qqqQ
1pσpe0qq ` βπ̂

1pσpe0qq “ 1. (5)

Eq. (5) enables us to study the properties of σ. We start with monotonicity. Consider a small

increase of e0 to e0 ` ε ą e0. If σpe0 ` εq ě σpe0q, then the LHS of Eq. (5) decreases, violating the

equality, since R1, Q1, and π̂1 are (non-negative) decreasing functions due to the strict concavity of

R,Q, and π̂. Thus, σ is a strictly decreasing continuous function from E to itself, and it has a unique

fixed point e˚ P E (also an interior point of E) such that R1pQpe˚q `Qpe˚qqQ1pe˚q ` βπ̂1pe˚q “ 1.

The next step of our analysis shows that, for every e0 P E, the sequences
`

σ2npe0q
˘

nPN and
`

σ2n`1pe0q
˘

nPN
monotonically converge to e˚, as n tends to infinity. In addition, the uniqueness of

e˚, along with the continuity of σ, imply that e˚ is bounded between σnpe0q and σn`1pe0q for every

n. That is, we show that the repeated use of σ tends monotonically to the fixed point e˚, and σnpe0q

oscillates around e0 as a function of n, with an amplitude converging to 0.

Now define Hpx, yq “ R1pQpxq ` QpyqqQ1pyq ` βπ̂1pyq and note that the concavity of Q and π̂

imply that Hpx, yq ą Hpy, xq for every y ă x where x, y P E. In addition, H is continuous and strictly

decreasing in both coordinates. Therefore, H satisfies the conditions of the following Lemma 1.

Lemma 1. Let H : E2 Ñ R be a continuous function, strictly decreasing in both coordinates, such

that

Hpx, yq ą Hpy, xq, (6)

for every y ă x where x, y P E. Then,

1. there exists c P R such that for all x P E, the eq. Hpx, yq “ c has a unique solution, ycpxq;

2. the function yc is a continuous, strictly decreasing function with a unique fixed point xc;

3. for every x P E, the sequences
`

y2n
c pxq

˘

nPN and
`

y2n`1
c pxq

˘

nPN monotonically tend to xc, where

ykc pxq “ ycpy
k´1
c pxqq for every k ą 1;
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4. the fixed point xc is bounded between ync pxq and yn`1
c pxq for every n P N and every x P E.

Proof. Ineq. (6) implies that Hpemax, eminq ą Hpemin, emaxq and we can fix c between these two

values of H. It follows from the strict monotonicity of H that Hpx, eminq ą c ą Hpx, emaxq for

every x P E. By continuity, for every x P E there exists a solution ycpxq for Hpx, yq “ c, and strict

monotonicity suggests that ycpxq is unique. In addition, the same two properties of H imply that yc

is continuous and strictly decreasing. Moreover, yc is defined from E to E, and therefore has a unique

fixed point, denoted xc. We conclude that Hpxc, ycpxcqq “ Hpxc, xcq “ c.

Fix x P E such that x ą xc. Since Hpxc, ycpxcqq “ c where H is strictly decreasing, we deduce

that ycpxq ă ycpxcq “ xc. Assume, contrary to the stated lemma, that y2
c pxq “ x. Then,

c “ Hpycpxq, y
2
c pxqq “ Hpycpxq, xq ă Hpx, ycpxqq “ c,

where the inequality follows from Ineq. (6). A contradiction. Since Hpycpxq, xq ă c, we conclude that

xc ă y2
c pxq ă x, as required for the result to hold. A similar proof holds for x ą xc. Hence, we can

now consider the sequences
`

y2n
c pxq

˘

nPN and
`

y2n`1
c pxq

˘

nPN bounding xc. Each of the two sequences

tends closer to xc as n grows. Since both are monotonic and bounded, they converge. Assume, by

contradiction, that a sequence, e.g.,
`

y2n`1
c pxq

˘

nPN, converges to x1c ‰ xc. Then,

x1c “ lim
nÑ8

y2n`3
c pxq “ lim

nÑ8
y2
c

`

y2n`1
c pxq

˘

“ y2
c

´

lim
nÑ8

y2n`1
c pxq

¯

“ y2
c px

1
cq,

contradicting the strict monotonicity of the sequences when x ‰ xc, and concluding the proof.

To conclude, consider the previously defined function Hpx, yq “ R1pQpxq ` QpyqqQ1pyq ` βπ̂1pyq,

and note that it sustains all the conditions of Lemma 1. Fix c “ 1 and substitute x and y by e0 and

σ, respectively. The previous analysis, prior to Lemma 1, shows that σ has a unique fixed point e˚

given c “ 1, and Lemma 1 ensures that an iteration of σ cyclically converges to the fixed point e˚.

Thus, we conclude the proof of Theorem 1.

B The stochastic case - analysis and proof

Similarly to the previous analysis, we transform the optimization problem derived from Eq. (2) to the

following Bellman equation

πpω0, Q0q “ sup
ePE

Eω0 r´e`RpQ0 `Qpω̃, eqq ` βπpω̃, Qpω̃, eqqs , (7)

where the expectation relates to the random variable ω̃, drawn according to P and ω0.

Proof of Theorem 2.

22



To prove Theorem 2, we follow Chapter 9 of Stokey et al. (1989), specifically using Assumptions

9.4´ 9.12 and 9.16´ 9.17. To facilitate this for the reader, note that the DM’s actions set E is fixed

throughout the stages in our model, therefore it is equivalent to ΓpX,Zq, as well as Y , in the notations

of Stokey et al. (1989). In addition, in their notation, the set of endogenous state variables X is

equivalent to our set S, which is the convex hull of all possible outputs QpΩ, Eq, and their set Z of

exogenous state variables translates to our finite set Ω of states. Let us go through the relevant basic

assumptions in Chapter 9 of Stokey et al. (1989), that are needed for the current proof:

• Assumption 9.4 requires the set S to be a convex Borel set.

• Assumption 9.5 relies on the assumption that Ω is countable.

• Assumptions 9.6, 9.9, 9.11 and 9.16 all refer to the DM’s actions set E which is a fixed convex

interval in our set-up, thus independent of Ω. As a result, all these requirements are met.

• Assumption 9.7 relates to the expected single-stage payoff function

F pω0, Q0, eq “ Eω0,Q0 r´e`RpQ0 `Qpω̃, eqqs ,

stating that F is bounded and continuous, for every ω P Ω. This assumption holds according to

the properties of R and Q (similarly to Assumption 4.4 used in the proof of Theorem 1);

• Assumptions 9.8 and 9.10 require F to be concave w.r.t. Q0 and e and increasing in Q0. These

assumptions hold similarly to Assumptions 4.5 and 4.7 used in Appendix A.

• Assumption 9.12 requires F to be differentiable w.r.t. Q0 and e, given ω P Ω, equivalently to

Assumption 4.9 used in the proof of Theorem 1. Evidently, this assumption holds for similar

reasons.

• Assumption 9.17 requires that that the function Qpω, eq is continuous in e, for every given ω P Ω.

It is important to note that we repeatedly use the linearity of the expectation operator, mainly in the

context of the function F , to extend the aforementioned assumptions from Appendix A to the current

stochastic setting. To sum up, Assumptions 9.4´ 9.12 and 9.16´ 9.17 stated in Chapter 9 of Stokey

et al. (1989) hold in our setting, so we can apply their results in this section. Specifically, we follow

SLP-9.6 through SLP-9.10, and use Exercise 9.7 which extends these theorems to our setting:

• SLP-9.6 proves that the optimal policy is a non-empty, compact-valued, upper hemi-continuous

correspondence.
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• SLP-9.7 states that the value function is increasing in the initial condition Q0, given ω0.

• SLP-9.8 establishes that the value function is strictly concave in Q0, given ω0, and that the

optimal policy is a continuous, single-valued, function.

• SLP-9.10 ensures that the value function is differentiable in Q0, given ω0.

In addition, the output in stage t depends solely on the realized action and the realized state in

stage t ´ 1, thus the required conditions in Exercise 9.7 in Stokey et al. (1989) are met, (with the

exception of 9.7´ g which is irrelevant for the current theorem) and the result follows by the interior-

solution property. To sum-up, based on previous results, there exists a continuously increasing, strictly

concave, differentiable payoff function π̂pω0, Q0q (all w.r.t. Q0), and there exists a unique, stationary,

and continuous optimal-strategy σ : Ωˆ S Ñ E.

By the differentiability of the RHS of Eq. (7) w.r.t. e, we use the envelope theorem and plug-in

σpω0, Q0q after taking the FOC, to get

0 “ Eω0

„

´1`

ˆ

R1pQ0 `Qpω̃, eqq ` β
Bπpω̃, Qpω̃, eqq

BQpω̃, eq

˙

BQpω̃, eq

Be



e“σpω0,Q0q

. (8)

The monotonicity and concavity of the output function, the reward function, and the payoff function

imply that the derivatives on the RHS decrease when either Q0 or σpω0, Q0q increase. Thus, an

increase in Q0 must follow a decrease in σpω0, Q0q to maintain Eq. (8). Hence, Eσ,ωt´1rQt|Qt´1s “

Eωt´1rQpω̃, σpωt´1, Qt´1qs, and σpωt´1, Qt´1q decreases w.r.t Qt´1.

To prove a cyclic performance, we start with the simple case where the state variable is absorbed,

with probability (w.p.) 1, to some fixed state ω P Ω. In such a case, the proof of Theorem 1 holds and

a cyclic performance follows. Otherwise, assume w.l.o.g. that the chain is irreducible. For every ω P Ω,

consider the function ψωpqq “ Eω rQpω̃, σpω, qqqs. By the continuity and monotonicity of σ along with

the compactness assumption over QpEq, there exists a unique fixed point qω such that ψωpqωq “ qω.

Since the Markov chain is finite and irreducible, we can take the stationary distribution µ and define

Q˚ “ Eµrqω̃s, where the expectation is taken w.r.t. µ.

Fix ω, ω P Ω such that qω ą qω ą qω, for every ω P Ωztω, ωu. We will show that for every ε ą 0,

w.p. 1, every trajectory visits the two intervals p´8, qω ` εs and rqω ´ ε,8q infinitely many times,

thus oscillating around Q˚ as needed. The idea behind this statement is that both ω and ω are visited

infinitely many times, and whenever the realized output is within rqω, qωs, the expected production in

the subsequent period is outside rqω, qωs. Namely, the monotonicity of σ implies that for every state

ω, the inequality ψωpqq ą qω holds if and only if q ă qω. Meaning, a realized production below (or

above) the fixed point qω guarantees that the next-stage’s expected output is above (or below, resp.)

the fixed point. In other words, the output oscillates in expectation.
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Fix a small ε ą 0 such that Q˚ P pqω ` ε, qω ´ εq. The compactness of QpEq along with the

oscillation-in-expectation property guarantees that there exists δ ą 0 such that PrpQpω̃, σpω, qqq ą

qωq ą δ for every q ă qω and, equivalently, PrpQpω̃, σpω, qqq ă qωq ą δ for every q ą qω. We will now

turn to a proof by contradiction.

Denote I “ rqω` ε, qω´ εs and assume there is a positive probability event D “
Ť

tPNDt where Dt

includes all histories such that the realized output from stage t onwards is in I. Since D has positive

probability, there exists DT Ď D with positive probability, and a positive-probability finite history h,

of length greater than T stages, such that PrpDT |hq ą 1 ´ δ. Now consider all continuations of h.

Each continuation h1 settles in ω infinitely often. Let τ rh1s be the first stage, after h, where ω is the

state variable according to a continuation h1. The construction implies that Qτ rh1s P I, and specifically

Qτ rh1s ă qω. By the previous statement, we know that for every Qτ rh1s ă qω,

Pr
`

Q
`

ω̃, σ
`

ωτ rh1s, Qτ rh1s
˘˘

ą qω| h, ωτ rh1s “ ω
˘

ą δ.

Summing up over all stages τph1q, we get that PrpDT |hq ą δ, contradicting the initial assumption that

PrpDT |hq ą 1´ δ and concluding the proof.

C Proof of Theorem 3

Proof. In this proof we follow the same analysis presented in Appendix A. However, to simplify the

notation, we revert to the auxiliary problem where the DM’s action set is QpEq instead of E, and the

DM’s t-stage payoff is given by ´Q´1pQtq`Rpp1´λqzQt´1`λQtq. To clarify, as stated in Section 2, the

stage payoff ´et`Rpp1´λqzQt´1`λQpetqq is equivalent to ´Q´1pQtq`Rpp1´λqzQt´1`λQtq, where

in the former expression the DM chooses the t-stage effort level et, whereas in the latter the DM’s

chooses the t-stage output level Qt. The equivalence follows from the one-to-one mapping between E

and QpEq.

Denote the initial position by Q0 P QpEq. Therefore, the equivalent functional equation to Eq. (4)

becomes

π̂pQ0q “ sup
qPQpEq

“

´Q´1pqq `Rpp1´ λqQ0 ` λqq ` βπ̂pp1´ λqQ0 ` λrq
‰

, (9)

where the DM chooses a production level q, receives a payoff of ´Q´1pqq ` Rpp1 ´ λqQ0 ` λqq, and

moves on to the next stage with evaluation p1´ λqQ0 ` λq. Note that Q´1 is the inverse function of

Q, and therefore strictly increasing, strictly convex and continuously differentiable.

By the properties of E, Q, and R we can use SLP-4.2, SLP-4.3, and SLP-4.6 (similarly to Theorem

1) to prove the existence, uniqueness, and continuity of π̂. Re-define the correspondence σ : QpEq Ñ
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2QpEq such that

σpQ0q “ tq P QpEq | π̂pqq “ F pQ0, qq ` βπ̂pp1´ λqQ0 ` λqqu,

where F pQ0, qq “ ´Q´1pqq ` Rpp1 ´ λqQ0 ` λqq. Theorems SLP-4.4, SLP-4.5, and SLP-4.6 prove

that σ is a compact-valued, upper hemi-continuous correspondence, that generates the DM’s optimal

strategy.

To show that σ is a single-valued continuous function, we need to prove that F pQ0, qq is concave

w.r.t. Q0 and q, and strictly concave w.r.t. Q0 (see SLP-4.8). By the strict convexity of Q´1 and

by the same analysis as in Appendix A, the concavity condition of F holds and σ is a single-valued

continuous function, while the value function π̂ is strictly concave. In addition, the fact that F is

strictly increasing in Q0 implies that the value function π̂ is also strictly increasing (see SLP-4.7).

The interior-solution property and SLP-4.11 prove that the value function is continuously differ-

entiable, and by the envelope theorem we can follow the analysis of Chapter 4 in Stokey et al. (1989),

to write down the following FOC of the Bellman equation,

0 “ ´
1

λQ1pQ´1pσpQ0qqq
`R1pp1´ λqQ0 ` λσpQ0qq ` βπ̂

1pp1´ λqQ0 ` λσpQ0qq,

or equivalently,

λQ1pQ´1pσpQ0qqq
“

R1pp1´ λqQ0 ` λσpQ0qq ` βπ̂
1pp1´ λqQ0 ` λσpQ0qq

‰

“ 1 (10)

Next, consider a small increase of Q0 to Q0 ` ε ą Q0. If σpQ0 ` εq ě σpQ0q, then the LHS of the last

equation decreases (since Q, R, and π̂ are concave), violating the equality. Hence, we proved that σ

is a strictly decreasing continuous function from QpEq to QpEq, thus it has a unique, interior, fixed

point Q˚ P QpEq such that

λQ1pQ´1pQ˚qq
“

R1pQ˚q ` βπ̂1pQ˚q
‰

“ 1. (11)

Combining the last two equations (the FOC equality and the last fixed-point equality) yields

λQ1pQ´1pQ˚qq
“

R1pQ˚q ` βπ̂1pQ˚q
‰

“ λQ1pQ´1pσpQ0qqq

”

R1pQ̂q ` βπ̂1pQ̂q
ı

,

where Q̂ “ p1´ λqQ0 ` λσpQ0q.

Assume Q0 ă Q˚. The monotonicity of σ implies that σpQ0q ą Q˚, and so Q1pQ´1pQ˚qqq ą

Q1pQ´1pσpQ0qqq. Therefore, it follows from the Equation (11) that R1pQ̂q`βπ̂1pQ̂q ą R1pQ˚q`βπ̂1pQ˚q,

or equivalently Q˚ ą p1´λqQ0`λσpQ0q ą Q0. In words, we showed that an initial position of Q0 ă Q˚

imposes a production above Q˚ in the subsequent stage, while maintaining the subsequent position

below Q˚. By induction, the same result applies in every stage to follow. Symmetrically, one reaches

a similar conclusion given Q0 ą Q˚, and we derive that the sequence pxQtqnPN generated by σ and Q0,

monotonically converges to Q˚.
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D Proof of Theorem 4

Proof. To simplify the proof, we use the same notation as in the proof of Theorem 3 where the

relevant Bellman equation is given by Eq. (9),

π̂λpQ0q “ sup
qPQpEq

“

´Q´1pqq `Rpp1´ λqQ0 ` λqq ` βπ̂pp1´ λqQ0 ` λqq
‰

,

such that Q´1 is the (strictly increasing and convex) inverse function of Q. To use Bellman’s principle

of optimality and Blackwell’s Contraction Mapping Theorem, we need to find a contracting operator

from the set of bounded functions to itself. Let B be the set of bounded real-valued functions over

QpEq. For every λ, define the operator Tλ : B Ñ B such that

pTλfq pQ0q “ max
qPQpEq

“

´Q´1pqq `Rpp1´ λqQ0 ` λqq ` βfpp1´ λqQ0 ` λqq
‰

,

for every Q0 P QpEq. This operator, along with the results of Chapter 4 of Stokey et al. (1989), was

used implicitly to prove Theorem 3, and will be similarly used in the current proof.

The proof is divided into five parts with respect to the different parts of the theorem:

Part I proves π̂λ2
`

Q˚λ1
˘

ě π̂λ1
`

Q˚λ1
˘

, for every two discount factors λ1 ‰ λ2 such that Q0 “ Q˚λ1 .

Part II proves π̂λ2pQ0q ą π̂λ1pQ0q, for every two discount factors λ1 ą λ2 such that Q0 ą Q˚λ1 .

Part III proves π̂λ2pQ0q ă π̂λ1pQ0q, for every two discount factors λ1 ą λ2 such that Q0 ă Q˚λ2 .

Part IV proves Q˚λ is strictly increasing in λ.

Part V proves Part II and Part III for the cases where Q0 “ Q˚λ1 and Q0 “ Q˚λ2 , respectively.

Applying Parts II, III, and V to any λ and with respect to higher and lower discount factors

produces the desired result.

Part I. Since Q0 “ Q˚λ1 is a fixed point of the λ1-evaluation problem, the DM will repeatedly

generate an output of Q˚λ1 and a payoff of π̂λ1pQ
˚
λ1
q. Thus, for any function f P B such that fpQ˚λ1q ě

πλ1pQ
˚
λ1
q, it follows that

pTλ2fq pQ
˚
λ1q ě ´Q´1pQ˚λ1q `RpQ

˚
λ1q ` βfpQ

˚
λ1q

ě ´Q´1pQ˚λ1q `RpQ
˚
λ1q ` βπλ1pQ

˚
λ1q

“ π̂λ1pQ
˚
λ1q,

where the first inequality follows from substituting the optimal q with Q˚λ1 , and the second inequality

follows from the assumption over f . By Bellman’s principle of optimality and Blackwell’s Contraction
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Mapping Theorem, along with the fact that the set of bounded functions that sustain the condition

fpQ˚λ1q ě πλ1pQ
˚
λ1
q is closed, it follows that π̂λ2pQ

˚
λ1
q ě π̂λ1pQ

˚
λ1
q, as needed.

Part II. Fix a function f P B such that fpqq ě π̂λ1pqq for every q ą Q˚λ1 . By Theorem 3, we

know that Q0 ą Q˚λ1 implies σλ1pQ0q ă Q˚λ1 , where σλ1 is the optimal stationary strategy in the

λ1-evaluation problem, such that the position in the next stage tends towards Q˚λ1 from above. Hence,

pTλ2fq pQ0q ě ´Q´1pσλ1pQ0qq `Rpp1´ λ2qQ0 ` λ2σλ1pQ0qq ` βfpp1´ λ2qQ0 ` λ2σλ1pQ0qq

ě ´Q´1pσλ1pQ0qq `Rpp1´ λ2qQ0 ` λ2σλ1pQ0qq ` βπ̂λ1pp1´ λ2qQ0 ` λ2σλ1pQ0qq

ą ´Q´1pσλ1pQ0qq `Rpp1´ λ1qQ0 ` λ1σλ1pQ0qq ` βπ̂λ1pp1´ λ1qQ0 ` λ1σλ1pQ0qq

“ π̂λ1pQ0q,

where the first inequality follows from substituting the optimal q with σλ1pQ0q, the second inequality

follows from the assumption over f , and the third inequality follows from the monotonicity of π̂λ

(w.r.t. λ) and of R. Since the set of functions f that sustain the required condition is closed, and

following the Contraction Mapping Theorem, the statement of Part II holds.

Part III. Similarly to Part II, fix a function f P B such that fpqq ě π̂λ2pqq for every q ă Q˚λ2 .

By Theorem 3, we know that Q0 ă Q˚λ2 implies σλ2pQ0q ą Q˚λ2 , where σλ2 is the optimal stationary

strategy in the λ2-evaluation problem, such that the position in the next stage tends towards Q˚λ2 from

below. Hence,

pTλ1fq pQ0q ě ´Q´1

ˆ

λ1 ´ λ2

λ1
Q0 `

λ2

λ1
σλ2pQ0q

˙

`Rpp1´ λ2qQ0 ` λ2σλ2pQ0qq

` βfpp1´ λ2qQ0 ` λ2σλ2pQ0qq

ě ´Q´1

ˆ

λ1 ´ λ2

λ1
Q0 `

λ2

λ1
σλ2pQ0q

˙

`Rpp1´ λ2qQ0 ` λ2σλ2pQ0qq

` βπ̂λ2pp1´ λ2qQ0 ` λ2σλ2pQ0qq

ą ´Q´1pσλ2pQ0qq `Rpp1´ λ2qQ0 ` λ2σλ2pQ0qq ` βπ̂λ2pp1´ λ2qQ0 ` λ2σλ2pQ0qq

“ π̂λ2pQ0q,

where the first inequality follows from substituting the optimal q with λ1´λ2
λ1

Q0`
λ2
λ1
σλ2pQ0q, the second

inequality follows from the assumption over f , and the third inequality follows from the monotonicity

of Q´1. Since the set of functions f sustaining the required condition is closed, and following the

Contraction Mapping Theorem, the statement of Part III holds.

Part IV. Assume that Q˚λ1 ă Q˚λ2 for 0 ă λ2 ă λ1 ă 1 (where the result for the end points is

trivial). Take q P pQ˚λ1 , Q
˚
λ2
q. According to Parts II and III, we get π̂λ2pqq ą π̂λ1pqq ą π̂λ2pqq. A

contradiction. Thus, Q˚λ1 ě Q˚λ2 , for λ1 ą λ2.
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Now assume that Q˚λ1 “ Q˚λ2 for λ2 ă λ1. We can take the FOC of the RHS of the stated Bellman

equation (similarly to Theorem 3), along with the derivative of π̂λ1pQ0q, to get the two equations,

λ
“

R1pp1´ λqQ0 ` λσpQ0qq ` βπ̂
1pp1´ λqQ0 ` λσpQ0qq

‰

“
`

Q´1
˘1
pσpQ0qq

and

π̂1pQ0q “ p1´ λqR
1pp1´ λqQ0 ` λσpQ0qq,

where the second equality follows from the envelope theorem. Taking λ “ λ1, Q0 “ Q˚λ1 , and plugging

the second equation into the first yields

λ1 r1` βp1´ λ1qs “

`

Q´1
˘1 `

Q˚λ1
˘

R1
´

Q˚λ1

¯ .

Since β P p0, 1q, the LHS is an increasing function of λ1, subject to 0 ď λ1 ď 1 . Thus, Q˚λ1 “ Q˚λ2
contradicts the last equality, implying Q˚λ1 ą Q˚λ2 , as needed.

Part V. We only prove the relevant case of Part II where Q0 “ Q˚λ1 , while a similar proof holds for

Q0 “ Q˚λ2 of Part III. Consider λ1 ą λ2 and fix λ3 P pλ2, λ1q. According to Part IV, Q˚λ1 ą Q˚λ3 ą Q˚λ2 .

Hence by Part II, π̂λ2pQ
˚
λ1
q ą π̂λ3pQ

˚
λ1
q, whereas by Part I, π̂λ3pQ

˚
λ1
q ě π̂λ1pQ

˚
λ1
q, which concludes

Part V.

Next, we prove the last statement of the theorem regarding the derivatives. If Q˚λ2 ď Q ď Q˚λ1 , then

σλ2pQq ă Q ă σλ1pQq, and p1´λqQ`λσλpQq increase with λ. If Q ă Q˚λ2 , we consider two cases where

either σλ1pQq ď σλ2pQq or σλ1pQq ą σλ2pQq. Assume that σλ1pQq ď σλ2pQq. Thus, λQ1pQ´1pσλpQqqq

increases w.r.t. λ, and by Eq. 10 along with the concavity of R and π̂, it follows that p1´λqQ`λσλpQq

increases in λ. Otherwise, σλ1pQq ą σλ2pQq ą Q and, again, we get the same monotonicity of

p1´λqpQq`λσλpQq w.r.t. λ. By the previously stated equation π̂1λpQq “ p1´λqR
1pp1´λqQ`λσpQqq,

and along with the concavity of R, it follows that π̂1λ2pQq ą π̂1λ1pQq, as stated.
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